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A

PREFACE

The gravitationa_ attraction of a ce_estia_ body on a particle increases be-

yond a_ _imits whenever the particle approaches the attracting center and finally

co_ides with it. Consequently the differentia_ equations of motion present singu-

larities at co_ision; the art of removing such singularities by appropriate trans-

formations of the coordinates and of time is ca_ed re_u_arization.

Severa_ methods for regularizing the 2-dimensiona_ motion of a particle, sub-

jected to gravitationa_ forces, are known. In 1895 T.N. ThieVe achieved simultane-

ous regu_arization of two attracting centers and in 1915 G.D. Birkhoff found a sim-

pler method for reaching the same goa_. A remarkable regu_arization of the p_ane

motion of a particle about a single attracting center was published by T.Levi-Civita

in 1906. He introduced parabolic coordinates in the p_ane of motion and used the

eccentric anomaly in p_ace of time as the independent variable. This procedure has

the desirable property of transforming the equations of pure Kepler motion into _i___n-

ear differentia_ equations, thus permitting easy integration and a simple theory of

perturbations.

Severa_ authors have proposed to take advantage of this fact for establishing

ana_ytica_ as we_ as numerica_ methods in ce_estia_ mechanics. In particular, this

was discussed in the spring of 1964 during a symposium at the research institute at

0berwo_fach, Germany [16]. It was generally fe_t that such a theory wou_d have only

a doubtfu_ va_ue if restricted to 2-dimensiona_ motion. Happily, P. Kustaanheimo

succeeded at the end of the session in constructing a 3-dimensiona_ generalization

of Levi-Civita's transformation by replacing complex variables by spinors. In the

paper [3] we reformulated this in terms of matrices, discussed the ana_ytica_ and

geometric properties of the transformation and outlined the perturbation theory.

This opened the way for further generalizations, for example the construction of a

3-dimensiona_ transformation of Birkhoff's type [17].

Other 3-dimensiona_ regu_arizations were known before, but as far as we know

they have not the property of generating _inear differentia_ equations. We mention

in this connection only the ingenious work of K.F. Sundman who established in 1913

his famous result on forever convergent expansions in the problem of the three

bodies.

In 1965 the Nationa_ Aeronautics and Space Administration of the U.S.A. sug-

gested that we study the problem of regu_arization with the 3-dimensiona_ case as

the principa_ area of research, furnish additiona_ know_edge of possible types of

trajectories and improve methods for numerica_ integration of trajectories.

This research was organized as a cooperative project of NASA and the Swiss

Federa_ Institute of Technology. It is my p_easant duty to express our thanks to

both organizations and to IBM for sponsoring this work. We are a_so indebted to
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NASA'srepresentatives Dr. E.D. Gelss_er, Dr. H.A. Sper_ing and Commodore C.

Dearman for their interest, comments and he_pfu_ assistance.

It should be mentioned in this connection that this report is intlmate_y con-

nected with research work done by NASA scientists. For instance R.A. Broucke [18]

of the Jet Propu_slon Laboratory has developed a perturbation theory of the oscu-

lating orbit based on [3], which is somewhat different from the theory contained in

this report (cf. section 1.4); R.F. Arenstorf [19] and H.A. Sper_ing [20] of

Marsha_ Space F%ight Center have published remarkable contributions to the theory

and application of regu_arlzatlon.

NASA's scientific support has created wider interest in ce_estia_ mechanics at

our unlvers±ty and, in particular, Mr. P. Sturzeneg_er and Mr. B. Stanek have faoi%-

itated our work by investigating some specia_ problems and by carrying out computa-

tions. We are very obliged to them and a%so to Mrs. S. Eisner who, with ever_astlng

energy, took care of a%_ the _itt%e detai_s Involved in printing and publishing

this report.

Finally we want to thank Mr. A. Schai, director of our computing center; he

was a%ways ready to he_p us and to put our programs on the Contro_ Data 1604-A

computer with high priority.

Zurich, September 1966. E. Stiefe%

How to read this report

I. A reader on%y interested in perturbations and practica_ computations wi_ skip

the more theoretica_ investigations on simultaneous regu%arization of two at-

tracting centers (sections 1.1.2, 1.2.2 and chapter 3).

2. References to _iterature are in square brackets.

3. We have the custom to _ist on the _eft-hand border of an equation the numbers

of the prevlous formu%ae needed for proving that equation. For instance

(1,98) (a + b) 2 = a 2 + 2ab + b 2 (1,99)

means more explicit%y: "from formu%a (1,98) it follows that (a + b) 2 =

a2 + 2ab + b2 and thiS result is the new formu%a (1,99) ".
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I. PRINCIPLES OF REGULARIZATION

by E. Stiefel

The motion of heavenly bodies may be predicted using the theory of classical

celestial mechanics. This theory leads to a set of differentia% equations, whose

solution provides the equation of the respective orbits of the various bodies. The

standard classical methods of solution of these equations is very successful if the

various bodies considered remain we%% apart from each other as they move in their

orbits. However these methods become cumbersome and inaccurate if the bodies are

involved in a near-co_ision, and break down a_Itogether if an actua_ co_ision is

involved. A very important practical problem for instance concerns the motion of a

space vehicle as it moves from the earth to the moon. This is in a state of near-

collision both at the beginning and at the end of its orbit.

The intention of this report is to introduce and investigate numerical as well

as analytical methods, which deal with this problem taking into account this some-

what shifted point of view. Such methods should be able to compute an orbit during

and beyond collision, and transformed into perturbation methods they should con-

verge rapidly also for orbits of arbitrary high eccentricity. This implies the

introduction of regularized coordinates and a regularizing time. Furthermore the

classical orbital elements (inclination, longitude of node, pericenter, etc.) are

not unambiguously defined as the eccentricity of the orbit approaches / (the

major axis dz remaining bounded). For this reason, and in order to provide a con-

venient general theory, we introduce also regularized elements in this paper.

We emphasize the practical computational aspects and avoid lengthy theories

by using sources already available in the literature. The report should be readable

however without consulting such sources too much.

At the end of the paper the genera% properties of regularized methods are

listed. Their advantages and disadvantages in the light of our experience, are

discussed.

1.1 Motion in a plane

A particle of mass _ is subjected to the gravitational force of a central

body /_ located at the origin of a Xo _-plane. (Fig. 1.1). A possible path is a

Kepler ellipse focused at the origin; if the eccentricity of this ellipse is close

to / , the orbit is very close to a straight line segment. In the limiting case,

the orbit is a straight line segment, the particle moving forwards and backwards

on this line, its position vector making a sharp bend of angle 2_r at the origin.

In order to remove this singular behaviour, generalized coordinates _,# _, are
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introduced by mappingthe physica_ X-p_ane ( x - x t 4 _x_ ) onto a parametric

U -p_ane (_- _w + _'u_ ) in such a way that the image of the particle moves on a

straight _ine a_ways in the same direction going beyond the origin after co_ision

and making no turns at co_ision. Thus the angle _ in the physlca_ p_ane should

become only _ in the parametric p_ane. In genera_ regularizing transformations

must have the basic property that an___atattracting centers are halved.

X I

U2

®

Fig. 1.1. Regularizing Transformation.

U I

The kinetic energy 7- of the partlc_e is a quadratic form in the general-

ized velocities _/ with coefficients depending on the position of the image

point. If our mapping X-- _(_) is conforma_ at points not occupied by attracting

matter, this form is reduced to a sum of squares, thus ensuring that each

Lagrangian equation contains only one acceleration _. We take advantage of this

fact by restricting ourselves to conforma_ transformations. The complex variable

is then an ana_ytica_ function x(_) of the complex argument _. We use the

Cauchy-Riemann equations

and we introduce the functionat determinant

a=. 2-g = (ae/ "

where i is either f or _. Denoting differentiation with respect to the time

by a dot, the velocity _ of the particle in the physica_ p_ane is given by

and its kinetic energy by
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(Themass _ of the particle is assumedto be _ f ; in our subsequentworking the
magnitudeof this massis irrelevant becauseit cance_sout of the equations of
motion). Theforces acting on the particle are supposedto havea potentia_ that
splits up into a conservative potentla_ _gxz) (eventually slngu_ar at centers of

attraction) and a perturbing potentia_ V(_,_ regular at those centers and

eventually depending explicitly on time. The Lagranglan equations of motion with

respect to the generalized coordinates _# are then

_ (o_.)- i _qsZ__,_o _ +_._ (z_ + vJ = o , (1,5)

where the potentials _, V are written as functions of _4 and _ before differ-

entiation. If we go from the parametric p_ane to the physlca_ p_ane by our trans-

formation, we have in genera_ conservation of angles, excepting that at the image

points of attracting centers angles are doub_ed. Such points are unconforma_ and

the coefficient of the highest derivative in (1,5) (that is the determinant _ )

vanishes there, thus producing a singularity of the differentia_ equation. In order

to avoid this phenomenon a regu_arizlng time - a_so ca_ed fictitious time S - is

introduced by the relations

We denote differentiation with respect to s by an accent and obtain the fot_ow-

ing modified forms of (1,5)(1,3):

where

. _'- _,o + L_ _ - ,o _____V
%, z _@ _ _.

,l

is given by

On the right-hand side of (1,7) appear the perturbing forces

9V

_.
in the parametric p_ane. They may be computed from the perturbing forces

the physical, p_ane by the formulae

in

(1,7)

(1,8)

_V PV 7, 9v _s;
Pz = 9,_z 'L," = 9 _. (,.)

(1,7) becomes

(1,9)

+ D-- = Oyi (1,1o)

This equation (1,10), derived above for the ease in whleh the perturbing forces can

be derived from a potential, is aSso va_id if this is not posslb_e, so _ong as the
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_1 are computed using (1,9). The last step of regularizatlon is the elimination of

_" by the vis viva integral

_L
÷ ZL = A + A/. (1,11)

is the constant of energy and

the work done by the perturbing forces. The result is

(Z/'S -h _. _ W. (1,131

This system of differentia_ equations is perfectly rezu_ar if the po_e of _ at an

attracting center is compensated by an appropriate zero of _).

A few remarks concerning initia_ conditions are in order. We have

_f _x, 9xy 3_ _x_

By solving for _zJ _z and taking into account (1,1) the formu}ae

_xz

are obtained; thus from (1,6)

-:- zZ. 4

' f ,t * -- ,t )

(1,14)

Sometimes it is pratica_ to introduce a sca_Ing factor

definition of the fictitious time:

_ - AD,_,s . (1,16)

This s_ight_y more genera_ regularization leads to the following basic and final

set of formulae.

(_#J in the

(1,15)

This enabtes us to compute at instant _- _-- 0 the vetocities _ in the para-

metric p_ane from the given velocities _ in the physical plane. Denoting values

at this instant _-- s-- o by the subscript o , we have atso

o
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Notations

coordinates

velocity

time

conservative potentiat

perturbing forces

work

physicag space

X_

Pi

parametric space

W __Zpid,_z

_, c_{) = ().
d5

fJ

w =J7. .

coordinates

time

velocity

=",_iC<,/,,x,i

_ .=

Transformations

( _xiJ"

tV)
(for any d ) (1,17)

(1,18)

(1,19)

perturbing force

v" X" D
(1,20)

(1,21)

or

Equations of motion

A dz (-A/ z a_j + D--_. = Dgy

k.- 2. + _'..

( _ _/o= initia_ velocity and potentiag).

(1,22)

(1,23)

(1,24)



-6-

1.1.1 Transformation of Levi-Civita. In the seque_ of the paper we consider only

gravitationa_ forces described by Newton's _aw of attraction. We begin with the

simplest case of a slng_e attracting center _ocated at the origin of physlca_ X-

p_ane; if the e_assica_ equations of motion are used, the attractive force becomes

infinite, if the particle is at the origin. Levi-Civlta [I] has developed in a

famous paper a method for removing this singularity by introducing the parametric

-p_ane and using the simplest mapping of the u-p_ane onto the x-p_ane satisfy-

ing the requirement to double angles at the origin and be conforma_ e_sewhere. This

transformation is (Fig. 1.1)

z -- z = (1,25)

The distance r of the particle from the origin of the pb_ysiea_ p_ane is

and from (1,2) we obtain

D = _x - ,lul z = *r,

(1,26)

With the choice _ _ of the sca_ing factor the equations (1,23) of motion become

For the Newtonian gravitation the product (r_) is a constant; thus the equations

are reduced to

u/ -_4_y = r_/ _ _ uv./4/, (1,_7)

and in particular the Kepler motion about the attracting center is given by the

differentia_ equations

u/ - 2_. = o (1,28)

because no perturbing forces are acting. These equations are not only regular at

the origin but a_so _inear with constant coefficients. This brings out the deeper

reason for the fact, that regu_arizatlon is not on___ us___efu_for co_islon orbits

but a_so for orbits of modest eecentricitF. If _ is negative the motion (1,28) is

a harmonic oscillation. The orbit of the image-polnt in the _-p_ane is an e_ipse

centered at the origin and mapped onto an e_Ipse of the physica_ p_ane focused at

the centra_ body.

1.1.2 Birkhoff's Transformation. For the transfer orbit of a vehicle from earth to

moon a simultaneous regu_arization at both attracting centers is needed. This was

performed by Birkhoff [2]. In order to facilitate the generalization to 3-dimen-

siona_ motion, we give a somewhat modified account of his _ines of approach to the

problem. The orbit of the moon about the earth is assumed to be a perfect circle.



-?-

A rotating coordinate system Yt#Yz is introduced (Fig. 1.2) in such a way that

earth and moon occupy fixed p%aces on the y_-axis, the origin being their center

of gravity. The prob%em of computing the orbit of a partic%e of neg%igib%e mass in

this force fie%d is known as the restricted circu%ar prob%em. We are sti%%

restricted of course to p%anar orbits in the y-p%ane. By convenient choice of the

units of mass, time and distance we may assume that

I. The tota% mass of earth and moon - f.

2. The distance of the moon from the earth -- I.

3. The gravitationa% constant = I.

Denoting the mass of the moon by _ we find this body at (/-/x, 0 ) and the earth

of mass (/-/_) at (-_ 0 ). The angu%ar ve%ocity of the rotating system is - I

as fo%%ows from the third _aw of Kep%er. Fina%%y we denote by r-_, _ the distances

of the moving partic%e from the earth and the moon respective%y.

earth -F L

!Y2

®

| -P" I'rlO0n

" .--"'' ® °' ®

0 Fig, 1 ,._2, Birkhoff's Transformation,

In the prob%em at hand the conservative potentla% _ is composed of the two

gravitationa% potentla%s and the potentia% of the eentrifuga% force :

U- _/L:ff- ..P--.- , _'- +y:J
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or up to a non-essentlal additive constant

the perturbing force is the Coriolis force

P,- p.=-2#, (1,30)

The key for achieving the desired regutarizatlon is the remark that Levi-Civita's

transformation (section 1.1.1) ha____sno___t_ton_yregutarlzing properties at th___ee_

bu___ta_s____qoa._ttinfinity. It is therefore sufficient to throw the earth into the origin

and the moon into infinity by appropriate and e_ementary conformat transformations.

The fo_owing chain of mappings is proposed. (The V-p_ane (tisted first in the

table) is the parametric p_ane corresponding to the regu_arlzed equations of mo-

tion, the y-p_ane (_isted at the foot of the table) is the physical p_ane of

Fig. I._32) .

space coordi-
nates

abscissa
of earth

abscissa

of moon

I vi _z

,5 /wy 0 oo

4 x i 0 o,_

6 Y; -3' 1-/w

Trans format ion

Inversion

Levi-Civlta (KS)

Inversion

y,- I _,+(I-< e<)

(1,31)

By inversion is understood a transformation by reciprocat radii. The center of

inversion is at the point ( _ O) and the radius of inversion is _ . (This state-

ment is vatid for the transformation 2---_3 as weft as for _----5 ; Fig. 1.2

i_ustrates the mapping 2_3 ). The transformations f---_2_ and 5_ 6 are

only unimportant adJustmentsl the essentla_ transformations _----5 are conven-

iently expressed in comptex notation by

__, = z _ Y-I = *-
7-1 ' x .- cl , x---T7 '

_here V is the comp_e_ conjugate of l/ ( V- _ "*' V,). These give for trans-
formations 2 --...,.6",

y - ;<'(v+7)
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and so, the complete transformation f_g is

y - _ Y +cs-H - _ (v + _) + rl- ffJ,

i
y: _(_+_) +

In rea_ notation this may be w-rltten

-#-

y,:

(1,33)

(1,34)

The distances _j _ have the fo_owing expressions:

Iv4_l _"I ' I,'-, _ IJ--,--_l = _ v+_.,._,, = z I_l (1,35)

I _ I , Iv-._l z (1,36)

The absolute va_ue in the numerator of (1,35) is the distance of the image of the

particle in the parametric ptane from the image of the earth. For establishing the

equations of motion the scheme (1,17) - (1,24) is apptied.

i i i,±is" _ -_ +_ :_ Ivl + = I_i: '

r-,.. (1,37)
v, .+v,. z"

For the computation of the Corio_is forces _# in the parametric space the abbre-

viations

(4,38)

are introduced. With _ I we have from (1,19)(1,21)(1,30)

t_A, C,Y,-5

Because the Corio_is forces do no work, the equations (1,23) of motion are finally

Here the expression
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has no %ongersingu%arities at the attracting centers; thus equations (1,40) are
perfect%y regular. From(1,20)(1,11) weobtain the energyrelation

_ 2---& " ÷ Z# (1,42)

(observe W= o) and after integration of the differentla% equations (1,40) the

physica% time _ is given by (1,18)

t - ./fD _ (1,43)
o

By Birkhoff's transformation a new slngu_arity is produced at the origin of the

parametric v-p%ane. This can be seen from (1,41). This event does not generate a

serious danger because this origin corresponds to the point at infinity of the

physica% p%ane. T.N.Thie_e removed a%so this slngu%arlty by substituting for _/ in

(1,32) an exponentia% not attaining the va_ue O. His transformation is

V" e , Y- co_ , .y - r_-_)÷ _c,,sz.

It is worthy of note that the right-hand sides of (1,40) can be simp%ifled with

the he_p of the Cauchy-Riemann equations for the ana%ytica_ function y(_ . These

expressions are reduced for /'-- 6 _ to (_D v__ ) and (-I D _') respectlve_y. But

we do not take advantage of this fact because it is no %onger true for the

3-dimensiona% motion of a partic%e.

1.2 Motion in 3-dimensiona% space

In this section we consider the motion of a partic%e moving in the 3-dimen-

siona% physica_ space referred to rectangular coordinates xq, X_, _j. It turns out

that a genera%ization of the methods of section 1.1 to 3-dimensiona% motion is im-

possible if on%y three genera%ized coordinates _,, _; _ are introduced. But at-

most a%% such methods have their adequate genera%ization if we are a_%owed to fix

the position of our partic%e by _ parameters _,, _, _, _, re_ated by a non-

holonomic condition. Thus the parametric space wi%% be a 4-dimensiona% space.

I .2 .I

formation described in section 1.1.1. The

The KS-Transformation. This is the genera%ization of Levi-Civlta's trans-

parameters _ are introduced by the

fo%%owing definitions:

For _3" _¢ = o this coincides indeed with (1,25). As in (1,26) the distance r

(1,44)

of the particle from the origin of the physica_ space is given by
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wheresummationgoesfrom
tion. A_sowehave

r -- ____[._;, (1,45)

/ to z_. This fo%%ows from (1,44) by explicit verifica-

(1,46)

This furnishes the fo_towing two a_ternatives for the computation of the U# from

the xi :

The second and third _ine are obtained by solving the second and third equation

(1,44) with respect to _aj _ or with respect to uq, u_. The _. are of course

only determined after choice of one among them, but this is irrelevant for our

purposes.

The transformation (1,44) has been studied in the article [3] and many con-

forma_ properties have been recorded. It follows from these considerations that the

basic formulae (1,17) - (1,24) are applicable with the only modification that

summation runs from / to j in the physica_ space and from ff to _ in the para-
¢

metric space. With _ = _ we obtain immediately

(1,17')

(1,18)

(_,19)

:.a=,a - =

olt - rd_ ,

f

"RD

(1,47a)

(1,48)

(1,20) _. /./. Z_T_, ,2._/ ----- -- _. , (I ,49)r

(1,21)

Let us assume now

of a body _ocated

potentia_ is

_..'l "" "2-f'--_..t /0_- _,:_z "/" _,,0...-i.) , (1,50)

% = .2( _, ,o, - u._p, + _, ,o_) .

that our partlc_e is subjected to the gravitationa_ attraction

at the origin and to some unspecified perturbing forces. Thus the
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= _ /'-1 (1,51)

where M is the product of the gravitationa_ constant with the mass of the centra_

body. Our automatic formula generator goes on as follows:

(4,22) ,,-,.,,; ,,,y,:. - ,.-%,., (1,52)
(1,23) _- _: - .2_ _./. = r _. + ,2. _V"u/. , (1,53)

U.. J

(4,24) ,4 .. u-- +:_ZoU" _ 2._'- _/': , /4/ -/Z ?,.d,,.. (4,54)
o

The set (1,48) of equations Implies

(1,55)

This is the non-ho_onomic condition mentioned at the beginning of this section.

Equation (1,49) transforms the vis viva integra_ (1,11) into

•2-Z. _/:" = _ + ,.-{A ÷ W}. (4,56)

This set of formutae is, in itself, a correction of guiding rutes for the numericat

computation of an orbit. Let us cat_ it

First procedure

(Perturbed motion of a particle about a centra_ body; computation of the parameters

_# as functions of the fictitious time & .)

Initiat conditions. Compute Initia_ position and velocity of the particle from

(1,47) and (1,48), a_so A from (1,54). _@= O.

Differentia_ equations. Integrate the system of 7'0 simuttaneous equations of

first order

_,./"- 2 A ./ - r ?i + .zW .j ,

l'= i-, Iv"- :___%,._e,:

j'- /, 2.., 3, #-,
(1,57)

At each step _j X i , _j are computed from (1,45)(1,44)(1,50), the perturbing

1) t, _ and I
forces /oz in the physicat space being known from other sources, k,,>_) (,56)

are used as checks.

As far as the author knows, this simpte procedure has never been used for ex-

pticit numerlcat computations. It wi_ be modified and refined in sections 1.3 and

1.4 for e_iptic initia_ conditions but it is possibly successfu_ for hyperbolic,

parabolic or near-parabolic initiat conditions. In such a case we advocate to

compute the perturbations 2)

(_,58)

I) If no co_ision occurs, the perturbing forces must not remain finite at the ori-

gin as was assumed in section 1.1.

2) Throughout the paper the subscript /_ indicates vatues corresponding to the un-

perturbed Kepter motion.
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of the coordinates of distance and of time. From(1,45) it follows

_ - 2-. (a_._ + z,j)_,_.,

thus (1,57) Can be transformed into

(1,59)

4-¢z,j.)_- zA_,j - 0.-_+ z_) ¢j + 2_(_.^ +_,/ , (1,6o)
I

(zt)" = _ , iv"= _ Z. {#_ + (_m?9, (1,61)

where _P is given by (1,59). This arrangement of the rules for computation avoids

the loss of significant figures by subtraction of almost equal numerical values.

The computation of the unperturbed Kepler orbit is described by equations (1,76)

(1,87)(1,88) in section 1.3.

The equations (1,52) of motion have not been taken into account in our first

procedure. They have the advantage that they avoid the computation of the work _/

but they suffer from the fact that both quantities 2M/r and _ are infinite at

collision. Nevertheless these equations are very useful for the discussion of the

osculating Kepler orbit in section 1.4.

1.2.2 The B3-Transformation. The generalization of Birkhoff's transformation

(section 1.1.2) to 3-dimensional motion is immediate. The y-coordinate system is

supplemented by a _-axis perpendicular to the plane of Fig. 1.2 and the particle

is allowed to move in space, _, _ denoting as before its distances to the

attracting centers (earth and moon). The potential (1,29) is modified by a term

containing _ and becomes

(1,62)

Again _ generalized coordinates _ are introduced for describing the motion of

the particle and the chain (1,31) of transformations is applied with the only

modification that the mapping of space 3 onto space 4 is performed by the KS-trans-

formation just discussed. Hence the spaces I through 3 have four dimensions and the

remaining spaces 4 through 6 only three. The inversion 2-_ for instance is

given by the formulae

_(V,-U , % 2 K , 4- z,3,_ (1,63)<",-"= (v_d_+v._,.v_+vj - =cv__/_+v,.+ _,-+v/-

The composition of the 5 transformations of table (1,31) is a tittle tedious

because complex notation is no longer available. The final result is

+ ,..<..'+i.j ]

Y3 --- _t fv-, ÷ v,% _÷ v__ •

(1,64)
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For _ _ _ -- O this reduces to the previous transformation (1,34). Because in-

versions are conforma_ mappings in 4-dimensiona_ as we_ as in 3-dimensiona_

spaces, the prescriptions (1,17) - (1,24) for establishing the equations of motion

sti_ ho_d true; one obtains

where

f

By choosing X_ f

¢,,,+_)%_'_<-,-_'2+v_- , cv,-7)%vf-+ _"+ v,/-

d,,,"+vf-+ _'- V',,<+_.-+ _<
, we have for the fictitious time

(1,18) dc - ZP ,_'_. (1,66)

The transportation of the Corio_is forces into the parametric space U/ reads to

exactly the same resutts as before, namety

/ _Y_ (1,67)(Z>,,.4_<- t>=s/>,,<)v_ , />_ - _,,,. ,
_t_ ,., D cA)

where _ is now running from f to _ and the equations of motion (1,23) are

_iterat_y the same as in (1,40), that is

and

The initiat position of the partic%e in the parametric space can be computed by

making use of table (1,31) in the reverse order, using the formutae (1,47) for the

inverse KS-transformation. Initiat vetocities are taken from (1,19)

vf - ,',.
After integration of the equations (1,68) the physica_ time is computed from

(1,70)

t --/Z9 d_ (1,71)

The foregoing brief description of the B3-transformatlon is adequate for our

purposes. A thorough analysis with detalted proofs is given in [4]. Further infor-

mation is contained in chapter 3 of this report (Wa_dvoge_); there the B3-transfor-

mation is estabtished for the more generat et_i_tie restricted problem, where the

moon is a_towed to move on an e_tiptie Kepter orbit.
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1.3 Kepler motion

1.3.1 The unperturbed motion of a particle about a centra_ body is governed by the

equati ons (1,53) (1,54)

j'- f, 2., 3, _ , (1,72)

where _p _ are respectively the inltia_ distance and the velocity in the physl-

cal space. If the coefficient of _j in (1,72)

frequency (jJ by

and write our equations

is positive, we may introduce a

(1,73)

'iv Z,.

a_j. .+- <.,o_2 - o (1,74)

Thus the motion of the image of the particle in the parametric space is a harmonic

oscillation and its orbit is an ellipse centered at the origin. This orbit is

mapped by the KS-transformatlon (1,44) onto a K__ler ellipse in the physical space

and if the image makes one revolution in the U-space, the particle itself makes

two in the physical space. Its velocity _ is determined by (1,49)

• .¢"- _/ • ,- - 7. _ (1,75)

r, given by (1,45) , is the distance of the particle from the origin of the physi-

cal space during its flight. By integration of the equations of motion we obtain

_.- _.s_.s_ + B. _,_,,s , _."- _(-_._,,,_s-,- /3i _, _) . (1.76)

is the fictitious time satisfying d_- _ d_ and _.j _F are constants which

are computed from the initial conditions as follows

- f ("_".,,'/o (1,77),*i = (_.)o , /_j

0bviousl, y the _ parameters _.j'3/_j characterize the motion of the partlclel we

call. them the regularized elements of the orbit. From (1,55) it follows at instant

,5-_O

"_,A-'_f_ +,_,,/3, -'_,'A, "" o (1,78)

Furthermore (1,56) can be written for _- O

where (1,54) and (1,73) are used. Thus it follows from (1,75) and (1,77)

: /Vl. (1,79)
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The 9 parameters _ _,?# are thus related by the two identities (1,78)(1,79),

This remark reduces the number of independent parameters to 7 exceeding by one the

classical number. This stems from the fact that the mapping of an orbit from physi-

cat into parametric space is not unique.

We shall next compute distance P and time _ in the physical space.

These formulae together with (1,76) and (1,44) determine a given Kepler motion

explicitly.

We now proceed to establish some connections with the classical theory and its

notations. The time T of revolution in the physical space is attained for

ou5 - _, thus

If _ denotes the semi-major axis of the Kepler ellipse in the physical space, we

have from Kepler's third taw

T-_a ,

and confrontation with (1,82) furnishes

By inserting this into (1,79) we obtain the important result

The mean angular velocity _ of the particle is

.zr - z#._ (1,85)

= 7-

By inserting the value (1,73) of 60 into (1,83), we obtain a we%l-known

relation of c%assica% celestial mechanics,

_/_ .- 2__ __" (1,86)

a _. ,A.¢, ,

which ho_ds true at any point of the Kepler orbit.

These formulae are a tittle simplified if the initial position of the particle

is the pericenter of the Kepler orbit. Denoting by e, E eccentricity and eccentric

anomal_ comparison of (1,80) with the classical formula
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reads to the resutt

e - -_ Z(_2-_.'_, E- _,o_, L_,pj - o. (I,07)

It sti_t remains to consider the cases where the coefficient of U# in (1,72)

is negative or vanishing. If the former event occurs, we have equations of the type

_j - °°_J =°. _'- 9 e +_-e ,

and the orbit is hyperbotic. A vanishing coefficient reads to

_=o, _. - _ss +/_" •

This orbit is a straight fine in the parametric space and a parabota in the physi-

cat space.

1.3.2 Variation of the etements under the inftuence of perturbin6 forces. Return-

ing to the generat et_iptic case we may write equations (1,53)(1,54)

This system is integrated by the famitiar method of variation of constants. We put

#j - o_.(_)_ _5 +_.(_J u_ _,

thus introducing varying etements

tiat equations

/ l
o9=- _- J

I _-_j (_),,_ _s ÷/_'<_) _'_ _sJ (1,90)(._j.- 6.u

_(S)) /'3j.CS) . They must satisfy the differen-

n./=_ _'r.._s _s . (I, 91)
' /,," 6d ,/

In order to rewrite the energy equation (1,56), we use (1,54) and

A - if')" /v/ - - z co"
2- _

r = _____.(_cv.cos _s + /9d ,,n _as¢z ,

(1,45) namely

or

(1,8o) r =;_AT- " " (1,92)

thus

(1,56)

or

= ,'-'/- __ "Z_..(.<.,<-,,-,<.<-,+ p.,.,,>,<,,_)=+ ," iv',

r W -- .2--CO"Z_('_"÷/3j9 - h4 . (I,93)
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We now co_%ect the formulae of this section and section 1.2.1. This co_ection is

our

Second procedure

(Perturbed motion of a partic%e about a centra% body; e%%iptica% initia% condi-

tions. Variation of e%ements.)

Data. /_4 -- product of gravitationa% constant and mass of the centra% body %ocated

at the origin of a cartesian system XT_ X,, X 3 .

Pi - components of the perturbing force (per unit of mass of the partic%e).

At instant _ = O the position XL and ve%ocities Xi of the partic%e are

given.

Initia% conditions. At instant _-- O compute the initia% va%ues of the genera%-

ized coordinates _x, Uz, Uj, U_ of the particle by either of the two sets

Take the _eft-(right-) hand set if .XI _ 0 (Xf,CO) and choose U¢ (_s) arbitrar-

i%y. At instant _-O compute a%so

f

# f

m

Co 2_ z_ •

(_, _- initia_ dis-

tance and velocity)

The initia_ va%ues _')o, {_')o

Furthermore at instant _ 0

of the etements o<j., /3j

we have the initia% va%ues

Differentia% equations.

(argument 3 )

are now given by

Zo = 0 , 7/_o "- 0 .

_" = r , W'= _ _,/u./, ./-/,,-,_,',,.

At each step of integration compute

& &

_" = =9'c,_,_os + _v- .,'_ws ,

" <_('-<<,.,_,u_ +/_. <_.,<_p

(1,9 4 )

(1,95)
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_f = 2(" _IP_÷

q_

Checks.

<x<p_+ <xlp._) ,

= 2(-_x,_p,+ <x,p_.+ u_,p..,j,

: x(-u_p,- u+p_+ _<,p.),

<><+p,- ,<ji_:+ ,<=g:- ,<,#+= o
,.-iv" - .z_=Z e<<;+D."-)- ,,v .

(1,95)

1.3.3 Perturbations of the elements. If the perturbing force is small compare d

with the central attraction, it is advisable to establish a companion procedure

computing the perturbations

Al_.y = o_...-_./_ ,, /I/3,..=/3d-pw W , A#" - r- #'_ , zl# - L -#_ (1,96)

of the e_ements, of distance and of time. As always the subscript _ indicates

values corresponding to the unperturbed Kep%er motion.

P_, _= are given by (1,80)(1,81) if the i_.itial values (_j')o, (_'7o of the e_e-

ments are inserted. From (1,92) it fo%%ows

where O(j for instance is an abbreviation for the arithmetic mean of the perturbed

and unperturbed etements of the _-type.

Companion procedure

Substitute for the differentia_ equations (1,94) the following routine.

Differentia_ equations. _A_/) t = _ _S_ F _i_ _ _z_#_)" = _ 5 co_ _o_6d / • #4J '

(,a_<J" = zr, it/'= Z_.pi_. _.

(Initial conditions f=/_)o = O, _x#_)o = 0 , (_##. _ O, _-=0).

At each step of integration compute

,a,.,--Z_,._,<._+R _D) + _<'__-_Z _'01.'_-4.,'/_.,,_+ _,,,z<_,_Zc'_._,4.+/_.-"_d,

,<.,= _,<,,;,+ _<<.,, D"= _.,.x+ ,_. ;

- =_+6Z.1<'<,£+%;11+

and proceed with (I,95).

where
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In order to avoid loss of significant figures, the energy-checkshouldbe
modified as fotlows. Becausethere is no workdoneby perturbing forces during the
pure Kepler motion, wehave r_/_ il_rid/) , hence

This companion procedure is the basic tool for the numerical experiments out-

lined in chapter 2 of this report (RGss_er). A fina_ remark should be added con-

cerning dissipative perturbing forces such as drag for example. In these cases, the

velocities of the particle in physicat space are a_so needed. These are given by

(1,19) namely

_,. _ "- " - o..+_#,,) , (1,98)- _- (u,_S + <x,u, u_ u+

,-(<,<,, + , ,

1.3.4 Ejection orbits. It must be stressed that the frequency g_ depends on the

initial conditions; _ shoutd be known with high accuracy as will be shown in

section 1.7. If the particle is starting at instant _--O at the origin (thus

coinciding with the centra_ body) this frequency appears in undeterminate form

because _ vanishes and _. is infinite. In this case we give only the direction

of the initla_ velocity vector Xi but we give a_so the numerica_ vatue of either

6_ , the constant _ of energy or the seml-major axis _. of the unperturbed

orbit, these quantities being connected by

(1,54)(1,83)(1,89) _z --__ --
(1,99)

The unperturbed orbit in physica_ space is a segment of straight fine and from the

given data the coordinates _* of the apocenter are at once obtained as we_l as

the corresponding parameters

is associated with the value

_d_ by (1,47). In the parametric space the apocenter

_ _ thus we have from (1,76)

the (_y)o vanish.

If the particle starts not exactly at the origin but near th___e_,

only poorly determined, thus _ should a_so be given in advance and again the

is

initla_ vetoolty-vector only by its direction. The vetocity l_j at the initial

instant is then determined by (1,48) up to a proportionality factor. This factor

may be computed from the law of energy (1,56)

_Av___.<x,;.- /v'+ r.A - /V'-_._ _. (_,_oo)
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Nevertheless inltia_ position and vetocity must be given with high accuracy if

(1,48) is app%ied.

1.4 The oscu%atin 5 Kep%er motion

We return now to the equation (1,52) of a perturbed Kep%er motion

/"I t,,z ,..- (1,1Ol)

The oscu%ating Kep%er motion at an arbitrary instant _ is by definition the pure

Kep%er motion constructed with the actua% values of the coordinates _# and ve%oc-

ities _/ at time _ as initia% conditions I). The semi-major axis of the oscu-

%ating orbit is a function _ of _ or _ and is obtained from (1,86)

Thus (1,101) can be transformed into

if/" 7 '7.," (1,1o3)

The variation of _ , as time goes on, is intimately connected with the work W

done by the perturbing forces. We obtain expticit%y this dependence of _ on _/

from the vis viva integra% (1,11). This gives

A disadvantage of (1,103) is the variabitity of the coefficient of Uj. This can

be avoided by introducing a new fictitious time 0- defined by the differentia%

re%ation

is the seml-axls of the oscu%ating orbit at the inltia% instant

and may be obtained from (1,102)

(1,1o5)

l _ %_ _ z (1,1o6)
(1,89) _ _ _ M = M '

where 64.) is the frequency used throughout section 1.3. The substitution (1,105)

transforms the equations of motion into

a _ . Muy.= ar

where accents denote differentiation with respect to 65 may be e%iminated by

I) This is to say if the perturbing force is switched off at instant _, the

partic%e moves onward on the oscu%ating orbit.
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differentiation of (1,104)

(1,12)

thus

o_/ 2-14/',= / 7_____., /" 22-_- f

- / /

=z_ t _,;.Z_. %_:.cou,. , ,:,°(" 9,,-* _ _, ). (1,107)

The right-hand sides of these equations can be considered as perturbations, because

they are proportionat to the perturbing forces. It sti_ remains to express _ by

quantities attached to the parametric space. With (r as independent variable

equation (1,49) is transformed into

_z #" Q" Z ,,,z.

thus

t .z -_ z. 1 >--...:,-
(1,102) _ = r r/'/r- O. (.,0 _ O. f'-

and by solving with respect to

/ _ , /,,1,/

a= }(r +-_---iZt_. y (1,108)

As in section 1.3 the equations (1,107) are integrated by variation of constants.

We agree however to denote the new fictitious time agaln by 3 and we put there-

fore

_.- _,. _ -_ +J. ,,_ .5, ./_ _(__j. ,,_ _,_ +/@. _ _:J. (_, 109)

The _/_ /Sj are functions of _ and are the e_ements of the oscu_atin_ Kepler

motion. Its semi-axis is

(_,_o8)(_,_)_ - -_[±c,_._o,_ +?,._ _

z7.(_.-4._, (,,,,0)

as could be expected from (1,84).

Third procedure

(Osculating orbit.)

Data and initia_ conditions as in second procedure.

Compute a_so Qo _ --

Differentia_ equations.

(argument _ )

/w,., _.",

/ff
z/._"

6"- _V/'-_ f...

_(E_ r_ _/ as in second procedure. Compute at each step a_so

a - _2.(_. ,_.:), # ,,,c,.('_. + _

Chec______k.
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As in (1,96) weestab%isha companionroutine by computingonly perturbations
with respect to the pure Kepler motion. Let _ _ L-- _ be the perturbation of
time, where #_ is the time passedduring the motion of the particle on the unper-

S.turbed Kepler orbit up to the position corresponding to a given va_ue of

According to our third procedure we have

and in particular on the unperturbed Kepler orbit (_ _o-- const.)

t_ = r^,
thus

(I,111)

_a and #_ being determined by the formulae (1,80)(1,81) of the pure Kepler mo-

tion.

Companion procedure

Data and initia_ conditions as in second procedure,

a° = _ <_,.)o , <_/_.)o o_oo2 , _0 _ ,

Differentia_ equations. (_'!_._" -- _ _ _d" S,_ COS
(argument _ ) dO

(,at)' == _V_-_ r _ r_ .

At each step of integration compute

40

=

+J___+.+ . co,Z c#,.Z?m c,-co,c,s#Zcm <#.j.2-0o

_(Z_ _, _l" as in second procedure. Compute at each step a_so

c_(,-_. + ..._4.z

Check. _t_A - °(...1_ 4- o(..+#s --_,?+ '-- 0 .

We should not forget to adapt the ru_es (1,98) for the ve_oeities to the

modified definition of fictitious time:

•(1,1o5) x_- _-

C_lC_,s+ ct,s_. _ ,.-c_,._t+, _. _r_) .

(1,112)
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The obvious advantage of the third procedure is that it avoids the computation of

the work _/ done by the perturbing forces; moreover, operating with the familiar

osculating orbit facilitates the comparison of classical and regularized computa-

tions. But it should be mentioned however that the companion routine suffers a

little from %oss of significant figures because on the right-hand side of (1,111)

the difference of two almost equal quantities appears. Our numerical experiments

however convinced us that this is not a serious danger.

i)
I._ Ana_tlca_ theor_ of perturbations

1.3.1 First-order perturbations. The methods and procedures outlined above are

valid for any particle subjected to e%%iptica% initial conditions and moving under

the influence of a central attraction and perturbing forces. There is no necessity

to assume that the perturbing force is sma%% compared with the central attraction.

On the contrary, this section is devoted to the study of perturbing forces

which are infinitesimally small; this is to say a theory of first-order perturba-

tions is developed. As the left-hand sides of the differentia% equations (1,107)

are already linear, n__qo%inearization is needed; this is in contrast to the c%assi-

ca_ theories of first-order coordinate perturbations [6] which are based on the

non-linear differential equations of the Kep%er motion. As in classical theories

the restriction to first order is performed by eva_uating the right-hand sides of

(1,107) no longer on the actual orbit, but on the unperturbed Kepler orbit which

osculates at time _-- 0 ; thus

As always, the subscript

The ratio

tions

indicates vatues to be taken on the unperturbed orbit.

@/O= disappears because _-- Qo. The right-hand sides of these equa-

are known functions of the regularizing time _ ; therefore the differential equa-

tions for the e%ements (as recorded in the third procedure) can be integrated by

quadratures:

-

For first-order perturbations (I, 111) is approximated by

2_ a.

(1,116)

1) More details on first- and higher-order perturbations are contained in [5].
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thus avoiding toss of significant figures. This implies the computationof

(.,,.,.,o_ _ ,-,7___-[:_.,Jo."'_.,+'4J."D]
and

(1,117)

(1,118)

Finally _ is taken from (1,80) or from (1,45).

Fourth procedure

(First-order perturbations of e_ements and of time; osculating Kepler orbit.)

Initial conditions. As in second procedure.

Computation ofth___eunperturbed motion (osculating at instant

simplicity of notation the subscript _ is suppressed.

x_= 2-(_.,_.3-/-_.%J ,

:.--_;+_ +_ +_:,.

m O ). For sake of

_WL '

Perturbing forces

_, = 2_( u/p,+ u,/_ _ u.._p_) .

'7-- 2(-u..o.+.,_ + %pj) .

% - .z(-u_,o,-u_.p,+_,/_),

q+ .. 2-( u+p,-u_p,'/u, pj,) .

+'-- _,__-++:__.:c+.::-c#;:/ ++<.<,

(1,119)

(1,120)

(1,121)

/

Perturbations of etements.

j J
I_. - -_-I_ ,,+_o,_, _/_.- _/_.

@ o

Perturbation of seml-major axis

Perturbation of distance

Perturbation of time

A_ = r + _-_. •

E_ements of the oscu_atin_ orbit at instant 5 •

_. - c_/o+A:<_, #. _ :/,+_+ _., _ = t_ + _.
Position _], _d of the particle from (1,95).
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Anaccounton numerica_experimentsis given in chapter 2 (Rgss_er). In the

seque_ the integrals (1,115)(1,116) are computed by Fourier expansion, therefore

some remarks about the periodicity of our functions are in order. A function f(s)

is ca_led symmetric or skew-symmetrlc if

- or - -P J

respectively. As can be seen from (1,120) the parametric coordinates _. are skew-

sylmmetric but the physlca_ coordinates Xi are symmetric. Let us assume temporar-

ily that the /oi in (1,120) are any functions depending only on the position _

of the particle in the physica_ space; thus they are symmetric functions. The

corresponding functions _/ are skew-symmetric as we_ as the perturbing functions

_.. But it should be stressed that the inte_rands

)" I " I (1,122)

are symmetric and have therefore by definition the period

I._.2 Three-body problem. We consider now the motion of a particle of negligible

mass in the force-fie_d of two heavy bodies moving about each other on perfect

Kepler orbits. As always the first body - referred to as centra_ body- is at the

origin of the x_-system and its gravitatlona_ parameter (product of mass and grav-

itational constant) is denoted by /_. The second body of gravitatlona_ parameter

/_ moves on the relative Kepler orbit, assumed to be an e_Ipse. Let _ be its

seml-major axis and

_Z (1,123)

the mean angular velocity of this second body, a_so ca_ed perturbing body. /_

should be smart with respect to /_. In our flrst-order theory the path of the

particle is a_so a pure Kepler e_lipse, as far as the computation of the perturbing

forces is concerned. In order to compute these forces, the position of the particte

wilt be fixed by its fictitious time 3 and the position of the perturbing body by

the physica_ time Z' . Furthermore _, _ are considered to be independent varia-

ble__s, since the forces /o_. exerted by the perturbing body on the particte are

defined indeed for two arbitrarily chosen positions of these two bodies.

For a fixed position of the particle the p_. are periodic functions of the

mean anomaly (_() with the period _; therefore we may expand them into a

Fourier-series:

lli--_

(In order do avoid accumulated exponents, we use the notation a&_- _ ÷d_,'_ ).

The Fourier coefficients /o,. are determined uniquely by the position of the

particle; they are symmetric functions /o¢_ (_) of _ in the sense o£ the pre-

ceding definition. BY inserting (1,124) into (1,120) the Fourier coefficients of

the integrands (1,122) are obtained and from our discussion above it follows that

these coefficients are again symmetric functions of _ •



- 27 -

simp%ify notation %et f stand for any of the _ integrandsIn order to

(1,122). The Fourier expansion of the integrands has now the typica_ form

÷_

where A C$) is of period _- with respect to its argument _.

But during the aotua% motion of the particle and the perturbing body the vari-

ables 5, _ are not independent but oorre%ated by the fact that _ is also the

Kepler-time _#r of the particle corresponding to the va_ue of _ under considera-

tion. By writing (1,121) in the concentrated form

(:1,!26)

equation (1,125) is transformed into

The expression in brackets is a symmetric function of

therefore be expanded in a Fourier-serles of the type

hence

of period -- and may

(1,127)

where the coefficients _v are constants. Any integrand (1,122) has such an ex-

pansion and by integration it fot%ows fina%ly

.:. + f'' , (1,128)+

the accent indicating the omission of (_)= (o_o). The constant must be deter-

mined in such a way that the who%e expression vanishes for _-- O . This finishes

the computation of the perturbations _#" of the elements and by further integra-

tion the perturbation _ of time is obtained, as was described in our fourth

procedure.

We proceed to discuss briefly the event of vanishing denominators in (1,128).

We have then

where _ is the mean angular velocity of the partic%e, determined by (1,85) and

(1,84). A vanishing denominator thus occurs if and on%y if the mean motion of the

particle and the perturbing body have a ratio that is a rational number. Such a

situation is known in classical ce%estiat mechanics as resonance.
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In practice however, the Fourier expansions shou%d not be carried out as de-

scribed above. The fo%%owing method is better adapted to automatic computation. An

auxi%iary variab%e 3_ is introduced defined by

heno e

(1,127) /- ZY_.A, + (1,129)
(_W

I (1,13o)
(1,126) _ " _--_1 + _1 + _z CoS 2cos + X_ _t_ _(.4.J_.

Evident%y, the integrands f can be considered as functions of the two independent

variab%es 5, 3_ , because any choice of 3 determines the position of the particle

and then an arbitrary va%ue of 51 yields a corresponding va%ue (1,130) of time

and consequent%y a position of the perturbing body. The development (1,129) is then

obtained by tabu%ating the _ integrands _ at equally spaced values of _, _1 and

by puting into action a standard automatic routine for doub%e harmonic analysis.

By introducing _# a%so in the final result (1,128), the result

_$ .-, Co_,,5_ ÷ foo& * z'(2pf,,o+ _Q.) C_S(lpco&+ _$_) (1,128a)

is obtained. The term _o & is the seeular perturbation and the sum is a double

Fourier-serles with respect to $, $1 •

In chapter 2 of this report, Dr. Rgssler has worked out an ALGOL-program for

computing first-order perturbations, based on the preceding analysis. In order to

obtain consistent algorithms, he introduces also regularized elements _d'_ for

the motion of the perturbing body. Furthermore he uses instead of S, 31 two modi-

fied independent variab%es intimately related to the eccentric anomalies of the

particle and the perturbing body.

P.A. Hansen [7] was the first to appreciate the advantages of a Fourier ex-

pansion with respect to the eccentric anomaly of the particle instead of using its

mean anomaly as independent variab%e as was customary in the works of his prede-

cessors. The introduction of 51 is due to him. Therefore there are some points of

contact between Hansen's methods and ours. Hansen's procedures are very accurate

and have been widely applied; they can however not handle the problem at hand. Our

main goal has been indeed to establish a perturbation theory remaining valid for

near-colllslons with the central body, that is to say for elliptic orbits with

eccentricity only slightly inferior to _ or even -- _. The numerical experiments

described in chapter 2 indicate that this goal has been successfully attained.

1.6 Secular perturbations

The investigations of section 1.5 have clearly indicated that the theory of

the osculating orbit and its perturbations, based on regularized e%ements, proceeds

along the same %ines as in the classical theories of Lar___, Leverrler and their

successors.
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In this section wediscuss someaspectsof _itera_ developmentsof perturbing
functions and of secular perturbations. Wedo not attempt to present a complete
theory but restrict ourselves to someexamplesof relative simplicity. Thesub-
script /T, denoting quantities attached to an unperturbed Kepler motion, is sup-

pressed in this section and by _j,_j we understand the constant e_ements of such

a motion. With this convention the equations (1,114) and (1,122) of our first-order

theory can be written

where

<'<s"=<><,,*>= -I-j. <.<>=>, =,,"- <,.,(-<><i +D. <.-,-V ,

Z-@:,

We remember the significance of our notations:

64r, uL, Uj, U¢- coordinates of the particle in the parametric space,

_/. I- perturbing forces in the parametric space,

accent indicates differentiation with respect to _ ,

_j_ _--perturbations of the e_ements and

60 is defined by (1,73)

2G _ '

/_ is the gravltatlona_ parameter of the centra_ mass and

initla_ position and velocity of the partlc_e.

(1,131)

(1,132)

(1,133)

(1,134)

1.6.1 Conservative perturbin_ potentla_. Let us assume now that the perturbing

forces /_z in the physlea_ space may be calculated from a conservative potentia_

_/_Xj which depends only on the position of the partlc_e. Taking into account our

KS-transformation (1,44) the perturbing potentla_ becomes a function _(_ in the

parametric space; if we replace _#, using expression (1,132), this function is

further transformed into a function _F_J _ of 8, where the _._. should

be treated as parameters independent of $. As was established after formula (1,8)

we have

thus

the %ast expression appears in (1,131). From (1,132) we a%so obtain the partla%

derivatives of _/ with respect to the e%ements c_- and _/. :

pV
- - . (1,136)
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By co_ecting (1,131) through (1,136) we have for instance

simi_arty

=. I O- £__v

_V
+

+ =_=_ <.</,E__,,<<;)03 l

<,., (-°<.i*'=<,o-,+_" _ _=) _y

This set of ru_es for computing the perturbations of the _j_. is anatogous to

the canonlca_ equations for the perturbations of the ctassica_ etements. We adapt

these rutes to the more familiar c_assica_ notation by a_towing the partlcte to

start from its perlcenter and introducing the eccentric anomaty &--- 2_S. Hence

____M

follows from (1,83).

tows that

d(z _.) ::

dE

is the semi-major axis and e the eccentricity; It fo_-

a [_U- e<,,,EJ # V #V# ].__ _ +(-:, +o<j ,
_V

(1,137)

In order to compute the integrals of the rlght-hand sides, V is expanded into a

Fourier-series wlth respect to _a-; thls imp_les a _Iterat development, thls Is to

say that the coefficients of the expansion must be given as exp_iclt a_gebraic ex-

pressions in the e_ements _'_ and _ or _-; otherwise their partia_ deriva-

tives are not available. An analogous anatysis can be carried out In the case in

which the perturbing potentla_ is not conservative but depends expticitty on time.

1.6.2 Secutar perturbations. Let us now investigate the secular perturbations of

first-order in the problem of the three bodies. As in section 1.5.2, a bar over a

symbo_ denotes a quantity attached to the perturbing body. If no resonance occurs,

the secular inftuence of the moving and perturbing body Is equlvatent to the influ-

ence of the Gaussian rin_ obtained by distributlng the mass of the perturbing body

over its ettlptica_ orbit proportlonat_y to the Kepler time on this orbit. The

potentla_ of this ring at a given point in the physica_ space is the integra_
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 /dt

where /o is the distance from the given point to the genera_ point of the ring,

/_ the gravitational parameter of the perturbing body and 7- its time of revolu-

tion. F_. I.___33).The perturbing potential V is conservative and thus our ru_es

(1,137) are applicable. If

v- K + V_E+ _6+ .-- (1,139)

is the Fourier expansion of this potential, we need only the first three ooeffl-

oients Vo, _3 _, because we are only concerned with secular perturbations and

are therefore only interested in the constant terms in the Fourier-series of the

rlght-hand sides of formutae (I,137).

X!

Fig. 1.3. Gaussian ring.

The further investigations of this section are restricted to a circular motion

of the perturbing body. (Fig. I.___3).The circte of radius _ is assumed to be in

the X2, _-plane and the position of the particle is described by polar coordinates

r,_. In this specia_ case the potentiat _ of the circular ring is given by

the Legendre expansion

P,. ,). (1,140)

where _n is the Legendre polynomla_ of degree (_). Because both sides are

harmonic functions, it is sufficient to verify this formula for _ O (particte

on the Xf-axis). It is then reduced to

/v/
i/_ ,z..._ #,x.

The _ast expression is undoubtedly the vatue of the ring-potentia_ at a point on

the % l-axis. The series (1,140) is convergent in the interior of a sphere having
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the circular ring as its equator. In order to transfer
space, weuse the explicit formula

Fromthe KS-transformatlonthe following expressionsare obtained

(1,44) x_ - _,_- _- _ + uJ ,

(1,47) " + ,<,==_-(<4+<,',_J, "-,<, "=_-(<,<,"+ u-2J,
hence

/-

V into the parametric

(1,141)

.-4: /<_,.,' <.;+ ..,..= %) (_:+<.,2.7_¢<#_<,;_<.<;+_,,_j'<<"'J.(1,142)

The zonal harmonics P _ are thus homogeneous polynomials I) of degree (4n) in

the parameters _j . The formulae (1,140) and (1,142) establish the perturbing

potential in the parametric space. According to the computational program outlined

in the first _ines of section 1.6.1 it still remains to introduce the elements

_j# _.. This is achieved by formula (1,76) adapted to the eccentric anomaly

The equations (1,137) (1,140) (1,142) (1,143) furnish all the necessary tools for com-

puting the secular perturbations due to a perturbing body moving on a circular

orbit.

1.6.3 An example. In order to give an example of explicitly computed secular per-

turbations, we truncate the series (1,140) after _ -- f. This is only reasonable

if the particle does not closely approach the perturbing body. With this approxi-

mation we obtain from (1,142)

v- f-,+ ,;+<.:j'- ,;U)
and by (1,143) this becomes a Fourier polynomial in _.

Working with this perturbing potentia_ Dr. R8ssler has computed the secular

perturbations; by introducing new quantities, connected with the classica_ orbital

elements, he obtains a rather simple result.

Let (Fig. 1.4) _,_ be pericenter and apocenter of the orbit of our partlele

and _, _ the endpoints of the minor axis. The corresponding values of the eccen-

tric anomaly are in that order

E : o o, f #o o, ...Qo°, 2 7_o" ,

I) It can be proved that they satisfy the 4-dimensional Lap_ace equation as does

any harmonic function in the physical space if transfered into the parametric

space.
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consequentlythese 4 points havethe parametric coordinates (1,143)

_ C-<_.+,,_.J_. <><1,_., _c_.+_.J, _

II I

:7...J
x2 _ x3

ring

Fig. 1.4. Approximate secular perturbations.

By straightforward arithmetic the altitudes XIA _ _t8, Xtca XtO are obtained from

the KS-transformation (1,44). In particular it turns out that

X/,4_ RrC ,= _- _,_ -o(,;-/-_; -- /S_ ÷ f_ @I/_;- /S_ , (1,144)

><,,,-x,o- 2 (o<,£__.,?_- :<,_+<><,ie+). (1,14_)
The shape of the Kepler orbit may be determined by its axis and its eccentricity

(1,84) IZl h_:ll_ -/-_i +0,'.._'-¢- Z - I. I. z._-- .z z. _ .f.._ .#._ .,l./% ..#./; J , (1,146)

(1,87) _ - -_ c:<;+_.:+:<._+<_ '- < " " ,-/_, -/,3, -/,¢ -p,,; ) (1,147)

its posltion in space by the two "inclinations"

/ (x,,_- x_z_) (1,148)_-=_ ('<,,,- ,_,_) , _-__

With this notation the final, result is as follows

zl<><j--._ M (_-_ _t)v<_.+[_+e+f +_(t+3e+@)-_- • E,
(1,149)

o
The upper sign must be taken for j=, _ /#" and the lower for j---,2, _. The verlflca-

tion of this result is a little tedious but straightforward, the identities (1,78)

and (1,87)
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being used severa%times. As alwaysthe e%ements_#,_ are computedaccording to
the rules "inltia% conditions" of our secondprocedure(section 1.3.2).

In chapter 2 (cf. 2.2.5) Dr. RSss%er describes four different methods for com-

puting the motion of a sate_llte about the earth, taking into account the perturba-

tions by the moon and he discusses a_so their accuracy. The four methods are:

First method (cf. 2.2.5.2). Companion of the second procedure (section 1.3.3).

Second method (cf. 2.2.5.3). Companion of the third procedure (section 1.4).

Computation of the specia_ perturbations of the e_ements of the osculating or-

bit by numerical integration of the corresponding differential equations.

Third method (ef. 2.2.5.4). Ana_ytica_ flrst-order perturbations of the elements

by double harmonic analysis (fourth procedure, section 1.5.1). In particular

secular perturbations.

Fourth method (cf. 2.2.5.5). Secular perturbations according to the formulae

(1,149).

The orbit of the sate%%ite under consideration has eccentricity 0.5 and high in-

c%ination with respect to the ecliptic; the very sma_ difference between the re-

sults of the second and third methods is due to the perturbations of higher order,

the fourth method gives the perturbations of the e_ements with an error of only a-

bout 4%. The reason for this is not the high eccentricity or _arge Inc%Ination but

is simply the truncation of the Legendre series. (The ratio _ : _ is _: 6.).

We have not established a companion formu%a to (1,149) for the perturbation of

time. According to our fourth procedure, to do so would require as a prerequisite

the computation of

c1,117) - Z +c/ J° (1,1 o)
In the three-body problem the _j" and _/_. appear as series of the type

(1,128), but if these series are inserted into (1,150) the secular terms cancel out

because of the we%%-known fact that there Is no secular flrst-order perturbation of

the axis of the osculating orbit. Thus

(_)

with unspecified coefficients _. For the evaluation of the secular perturbation

(1,116) of time the constant term _@o of this series is needed; this term is de-

termined by the initial conditions at instant S -- O :

_ _ O , _oo _v

(a, v)

Therefore all the coefficients aav with (n_V)@ (o,o_ should be known and con-

sequently also all the Fourier coefficients of the expansion (1,139) of the per-

turbing potential are required. We recal% the fact that three of these coefficients

were sufficient for estabtishlng the secular perturbations of the e%ements. This

complication makes it impossible for us to establish a formula for the perturbation

of time which is as simple as (1,149). A similar comp%ication occurs in the classi-

cal theory if the perturbation of the mean anomaly is wanted.
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Not only perturbations by a third body can be computed by our analytical

theory, but also perturbations of other types as for instance that generated by the

aspherlcity of the earth. But in that case convergence is not so rapid because the

perturbing potential is no longer regular at the origin (center of the earth) as is

assumed in section 1.1.

1.6.4 An ejection orbit. In order to demonstrate the merits of regu_arization, we

compute in this section explicitly the secular perturbations of an ejection orbit.

(Fig. 1.5). A particle is ejected from the origin A into the _,_2-plane.

X!

physicol plone I

C

LLI1

porometric plone

Fig. 1.5. Secular perturbation of an ejection orbit.

Under the influence of the attraction of the central body (located at A ) its un-

perturbed orbit is a segment AC with apocenter at C. Let _ be the angle be-

tween this segment and the X_-axis and _= f the distance A C. The perturbing

Gaussian ring is sti_t a circle in the Xz,_3-plane with radius _. The unperturbed

as well as the perturbed orbit are in the _X2-plane; therefore it is sufficient

to take only this plane and the _2-plane of the parametric space into consider-

ation. The correspondence between these two p_anes is given by Levi-Civita's trans-

formation (1,25)

X t= _-_, _=.2_u x_ ,

or in complex notation (1,153)

The orbit in the parametric space is thus the straight _ine CC building the angle
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_ with the uf-axls andthe parametric coordinates of the upper point C are

_f _ __ ; u_ - sd_2_ •

As was pointed out in section 1.3.4 the e%ements of the unperturbed orbit fo%%ow at
1)

once from this information

_,-o. _.= o. _,= "_ _ • F-= "'"_ (1.154)

Furthermore we have according to the definitions (1,146)(1,147)(1,148)

="i, _ e-= f, ,,-=-¢_p , ,_'-. o . (1,155)

The perturbations (1,149) are now reduced to

_,-/_ c2- s_ - _) _,__,

with

As time goes on,

/I -- 8 _o./

the oscu_atlng Kep%er orbit is thus given by (1,76)

E

In the _#_ UL-plane the point C and the point p with coordinates

are endpoints of conjugate diameters of the e%llpse. In Fig. 1.5 the va%ues

(1,156)

(1,157)

(1,158)

_= 6_ °, IF= - o./E

are adopted. The e%_ipse in the _#,_,-p%ane is constructed from the conjugate di-

ameters. The endpoints of its major and minor axis are mapped onto the apo- and

pericenter of the oscu%ating Kep%er e%%ipse in the physica% X,_Xa-p%ane.

This examp%e is a%so computed in chapter 2 (cf. 2.2.6) by using the fourth

procedure and doubte harmonic ana%ysis. The Fourier expansion of (_#) is printed

out. Furthermore the same investigations are carried out for a eircu%ar unperturbed

orbit in the _, xz-p%ane (cf. 2.2.7). The rate of convergence of the Fourler-series

is about the same for this circu%ar orbit as for the e4ection orbit.

I.? On stabi%it[ and conversence

In this section some remarks are added concerning the numerlca% stabi%Ity of

the integration of the differentla% equations and the convergence of the Fourier-

series; we do not attempt to estab%ish a comp%ete ana%ysis of this kind of prob%em.

I) The e%ements _tj, o_,_,4 vanish for a%% the orbits under consideration.
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1.7.1 Stabillt_ of pure Kepler motion. The regularized differential equations are

(1,74) _f ÷ 02_j -- 0 , /_ _,S, _ , (1,159)

where accents mean differentiation with respect to the fictitious time _ defined

by

(1,47a) (1,45) d_- pd_, r - _ _.L (1,t6o)

The four unknown functions _.(_]

instant _-O :

@coj- (_o , _.'(o) -. c_.%

We shall now discuss the influence of errors _d@)@ , Z (_j):

values on the calculated motion of the particle, assuming

known in advance. Such errors generate errors

(1.77) .,,_ - zc_.Z , _ = _ ,4¢_i')o
of the regularized elements and thus also errors

of the solutions of our differential equations. It follows

I_.(_)1 _ I_-I + I_1
 he e<o ethe :
errors of the elements are suitably sma_:

< 1 4,I <
Thus we have the result that the differential system (1,159) has the property of

strict stabillt_.

Errors of the coordinates Uj may occur at any step of numerical integration

and such erroneous values are then used as inltlal conditions for the next step.

Because the true motion is strictly stab%___e,as integration proceeds such errors do

not carry the calculated position of the particle too far away from its true posi-

tion. Thus the numerical integration of (1,159) is numericall_ stable. The classi-

cal equations of Kepler motion do not share this property, because they are not

strict%y but only orbitally stable. 1) In this section we do not discuss the accu-

mulation of truncating or rounding-off errors. Chapter 4 will be devoted to some

are subjected to given initial conditions at

(1,161)

in the initial

02 fixed and exactly

(1,162)

(1,163)

(1,164)

provided the

1) The reader will recall that strict stability is a much stronger condition than

the more usual orbital stability. Orbital stability requires only that if slightly

perturbed, the particle follows an orbit which is very close to the unperturbed

orbit, but it may at a tater time be at a position on this orbit quite different

from the corresponding position on the unperturbed orbit. Strict stabi%ity requires

in addition, that at a later time these positions are close to each other.
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aspects of this moredifficult realm of problems.

It mustbe recalled howeverthat the frequency _ is determinedby the ini-
tial conditions

(1,73) z= _ _._ (1,165)

Consequently it may happen that a slightly erroneous but constant value of _ is

used at every step of integration. Instead of the true coordinates

the modified values

are thus computed, assuming for the sake of simplicity the initial values (I,161)

to be accurate. In order to facilitate the discussion we introduce a variation _6

defined by

_.s = m _ (1,167)
S (.,0

or

(1,168)

This equation shows that the orbit is not changed at all, but the calculated posi-

tion of the particle on its orbit moves away from its true position on this orbit;

this phenomenon is of unstable character since _ is proportional to _. More

precisely it follows from (1,167) that the relative error of _ is equat to the

relative error of _. The motion (1,159) is thus orbltally stable but not strlctly

stable. Therefore _ should be given with very high accuracy. By virtue of equa-

tion (1,83) this is equivalent with an accurate value of _. As in the classical

theory the seml-major axis _ is the most important orbital e_ement.

In practice we are faced of course with a superpositlon of the two phenomena

discussed above. Any errors of the position of the particle and its velocities in

physical space produce indeed errors of the elements _. as wel_ as an error of

_J . Neverthetess it must be stressed that after choice of a fixed value of _ the

numerical integration of (1,159) proceeds with perfect numericat stability as was

pointed out in the preceding discussion. This integration is thus reproduceable

even if different numeriea_ techniques or different automatic computers are used.

It still remains to discuss the influence of erroneous initial values on the

physical time _ if time is computed by

--/p a¢_'4. (1,169)

As at the beginning of this section we assume a fixed and accurate value of the

Then we have
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frequency _ . As can be seen from (1,81) errors _°j _ produce a secular per-

turbation

of the time, hence the computation of physica_ time is unstable.

We i_ustrate this phenomenon by the fo_owlng very slmp_e example of p_anar

motion. (Fig. 1.6). The initia_ position of the particle is the point (_0) of the

_ _-coordinate system and the initia_ velocity is (_f). By puting /_-- / we

obtain as orbit of the particle the circle c and the motion of the particle is

determined by

_-_,

where _ is the true anomaly (polar angle) and

it follows

#
_J_ _ •

(1,170)

(1,171)

the physlca_ time. From (1,165)

(1,172)

/
/

/
/

x!

Fig. 1.6. Stability.

Let us assume now that an error _ occurs in the vertica_ component of the initia_

velocity, such that the initia_ position (_ 0) remains as before but the initia_

velocity (Ojf+g) is used. According to our assumptions the differentia_ equations

(1,159) are integrated with the true va_ue (1,172) of _4J but under the erroneous

Initia_ conditions

v',,U<,... 1, (_,_)o = o ; (,_,),>- o, (._.,J° - f÷ _ . (1,173)

In order to obtain the resutts of this integration we compute the corresponding
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e%ements
(section 1.3.2) wehave

_ 4 " Fromthe ru%es"initia% conditions" of the secondprocedure

("_.,_,.Io -- I + _c,,,)° = 1, o ;

o6f - f, oct. == o ;

and thus the errors of the etements are

A_,_- O, A_-,z - 0 ;

(1,174)

- o, - (1.1?s)

The motion of the partic%e in the parametric p%ane is now

and for the specla% va%ue _--_r we obtain _f---/, _-- O, hence

(1,44) Xf = 1, x z = 0 •

The partlc%e is again at its initla% position, this is to say at point _ of

Fig. 1.6. The corresponding va%ue of physlcat time is

(1.81) t- ,-" (,++).

At this instant the anomaty of the partlc%e on its true orbit is _,-- l_(4+&_

as fo%%ows from (1,171) and the corresponding point is denoted by 771 in F__. 1.6.

After one revotutlon we have thus the error _ in the true anoma%y. After many

revo%utions this error is mu%tiptied by the number of revo%utions and this resu%t

demonstrates c%earty the instabi%Ity of the computation of motion.

In contrast to these considerations tet us discuss now what happens if the

motion is determined by integration of the ctasslca% equations of cetestia% me-

chanics. The erroneous initiat conditions (1,173) put the particte on the e%tlptic

orbit e of Fig. 1.6. Its semi-major axis _ is determined by

(1,86)

and the corresponding revotution time is according to Kepter's third taw

T- 2_ _'_ "_ m_(f + 2_) "I_ _ _z_ (/÷ 3_) .

After this time the partlc%e is again at initia% position _--_ but on its

true orbit it is at position _ corresponding to the va%ue _,-- 2_I÷ 3a) of

the true anomaty. In this ease we have therefore after one revo%ution the error

6_ in the true anoma%_.

We may thus estab%Ish the fottowlng conctusion. In this exampte the regu%ar-

ized method is characterized by a mltd instabi%it[, due to the undertylng correct

va%ue of _); but the ctasslca% method has a sh___ instabi%ItM, the ratio of the two

instabi%Ities being about /: d .

As above we may venture to predict now the accumu%atlon of truncation- and

rounding-off errors during a numerica% integration. If regu%arlzed methods are used
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the errors of a single integration-step deteriorate as a_waysthe accuracy of the
initia_ conditions for the next step. But becausethe samefixed va_ueof g_ is
used at each step, wemayhopethat the accumulation of errors is governed by the

mi_d instability and is thus more favourable than for the c_assica_ differentia_ e-

quations. This prediction is corroborated by the numerica_ experiments in chapter 4

of this report.

We may summarize these considerations as follows. Our regularized methods are

characterized by a neat separation of the computation of the orbit from the deter-

mination of th____eposition of the particle i__nit___sorbit. This separation may be con-

sidered to be an advantage since it has the tendancy to stabilize the computation.

Our discussion of stability brings out the deeper reason for our attitude in

preferring the companions of the second and third procedure (cf. 1.3.2 and 1.4} to

the procedures themselves; in the companions the dominant part of the physica_ time

(that is the Kepler-time _ ) is computed by an explicit formula and not by nu-

merica_ integration.

1.7.2 Conver6ence of Fourier expansions. We now proceed to discuss a very simple

example which demonstrates the advantage of expansion with respect to the eccentric

anomaly in contrast to expansion with respect to the mean anomaly. We restrict our-

serves to p_ane motion of the particte (Fig. 1.7). As a_ways the centrat mass /_

is located at the origin and p is the distance of the particte from the origin.

®

//////////////// z//////////////_"/_

I

,,
E_ _L

I

I
I
I

I

///////////////, //////////////_%_.._.,I

Fig. 1.7. Convergence of Fourier expansion.

Let furthermore the particle be subjected to a conservative perturbing potentia_

V(rJ which depends only on the distance _ and is an analytic function of the

complex variable P regular for a_ values of r satisfying

[rl < E (1,176)
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This situation occurs for instance if the perturbing potential is generated by a

circular Gaussian ring (of. 1.6.2) of radius _ lying in the plane of motion and

centered at the origin.

On a Kepter ellipse with semi-major axis _ and eccentricity e, the distance

of the particle is

P -- _#- e _ EJ, (1,177)

hence the potential is transformed into an analytic function of the comp%ex varia-

ble E which is the eccentric anoma%y. We sha%% now discuss the domain of regular-

ity of this function. We put

and we have accordingly

hence

and

E- e,+ _'_ (1,178)

where _-_, ,-CAare the hyperbolic functions. Thus

II- - + +

- l-2e _.C4_ + #(C4_- s,'_J.

This expression attains its maximum va%ue for _--2_, this value being

l+2e CA_+ ezCAzV, = (f_- e CAV_J z ,

lt-I a (,+ecAmJ.

Let now _o be the solution of the equation

_(I+ ecX_)= _ , o_w, .= _

(1,179)

-- - I/ • (1,18o)

This value _Po does exist as a real and positive quantity if

this is to say if the apooenter (and consequently the Kepler e_lipse) is wel_ in-

side the circle of radius _ described above. Assume now I_I _ _@. From this

hypothesis and from (1,179)(1,180) it follows I_I< _. Thus the potential V is

regular in the interior of the horizontal strip I_I_ _ of the complex 6-plane.

(Fig. 1.7). Since V is a periodic function of _ with real period _, the

Fourier expansion of V with respect to E converges in the interior of this

strip and in particular it converges uniformly for a%% real values of the eccentric

anoma%y E.

Let us consider now the family of orbits contained _n the Inte_io_ of S con-

centric circle of radius _. For any orbit of this family we have
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For a_%the orbits of the fami%y the function V Is thus regu%ar in the common

strip I_I _ Z74 regardless of the eccentricity of the orbit and even for a co%-

_Ision orbit (the segment OM in Fig. 1.7). The rate of convergence of the Fourier-

series of V with respect to E is determined by the breadth of this strip_ hence

the convergence is uniform with respect to the individua%s of our fami%y inc_udlng

the co%%ision orbit with e= [.

The situation is different if the mean anoma%y _ Is used as independent vat-

lab%e, defined by the Kep%er equation

,-a = E- e s,_E (1,181)

In order to establish V as a function of _, this equation must be so%ved with

respect to E. This operation produces new singu%arities name%y branch points in

the comp%ex _-p%ane determined by

d_
= /-e _E--- o.

_E

One solution _-y of this equation is a point on the imaginary axis of the E-p%ane

and the corresponding branch point _f is akso on the imaginary axis of the _-

p%ane. If the eccentricity e increases and approaches its _imit /, the points

_, n_ approach the rea% axis of their p%anes. Because r/zf is a singu%arity of

Y (considered as function of 7_z ), the Fourier expansion of _ with respect to

7/_ wi%_ converge very poor%y for high%y eccentric orbits of our fami%y and we have

no _onger uniform convergence In our faml_y.

As we can see from this examp%e, the convergence wlth respect to _ is ex-

tremely sensitive to the eccentricity of the orbit, whereas the expansion with re-

spect to _ does not suffer from this disadvantage.

More information about the rate of convergence of such Fourler-series is a-

valuable by eonsukting the theory of asymptotic behaviour of the Fourier coeffi-

cients of ana%ytic functions.

1.8 Conclusions

We _ist here some characteristic properties of the regularizing methods that

are presented in this report. We a_so compare these methods with some c%assica%

procedures. Only the KS-regu_arization (of. 1.2.11 is considered.

1.8.1 Genera% theoretica% aspects.

- Regu%arized methods are not sensitive to the eccentricity of the (unperturbed)

orbit, they remain efficient for co%%ision orbits without %oss of accuracy or con-

vergence.
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- Thedifferential equations of a pure Kepler motion are linear. This incorpo-
rates the theory of perturbed motions into the wel_-exploredrealm of forced oscil-
lations with non-llnear restoring forces; discussion of stability and error propa-
gation is thus facilitated.

- Becausethe coefficients of these linear differential equations are constant,
the methodsof "perturbations of coordinates" and "perturbations of elements"are
practically equlva_entin contrast to the classical approach.

- The regularized orbital elementsare unambiguouslydefined even for a collid-
ing osculating orbit anddetermine this orbit unambiguously.Theyobeya simple set
of differentia_ equations. But since there are 8 suchelementsand since the ficti-
tious time _ is introduced, a systemof 9 or 10 first order equations mustbe in-
tegrated. Theclassical theory uses only 6.

1.8.2 Genera_ perturbations (Double Fourier expansion).

- In a_l our experiments the rate of convergence of the Fourier-series was not

appreciably influenced by the eccentricity of the osculating orbit; in particular

it was for ejection orbits as wet_ as for nearly circular orbits.

- However the forma_ apparatus is slightly more complicated than in the classl-

cal Lagrange theory. In particular, the theory of the osculating orbit was devel-

oped only for the case of a finite seml-major axis. (No parabolic or hyperbolic

osculating orbits).

1.8.3 Numerlca_ aspects.

- The use of the fictitious time S causes a modification of the step length of

integration which gives a "slow motion picture" of the particle's motion in the vi-

cinity of most sharp bends in the orbit and, in particular, when the particle is

near to the attracting center. This property is advantageous for the computation of

transfer orbits from one ce_estia_ body to another.

- However, because the physical time _ appears as a function of the independ-

ent variable $, the computation of particle's position at a given time _ is only

feasible by interpolation.

- In our numerical experiments we a_ways used the Runge-Kutta method for inte-

gration of dlfferentia_ equations. Error propagation was more favorable by far for

the regularized computation of the coordinates Xg (pure Kepler motion) than for

the integration of the c_asslcal equations

r d

(Cowe_l's method). With high probability this statement wilt remain true for per-

turbed orbits and if e_ements instead of coordinates are used.

- Consequently a larger step may be used than for classical integration. This

advantage outweighs the increase of numerical labor due to the transformation of

coordinates _d time and the higher number of differential equations required by

regularized methods.
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- Therefore regularized methodsmaybemoreeconomica_than c_assica_ones, in
particular if there is high eccentricity. This prediction wascorroborated by ex-
perimentsof Dr. R6ss_er {cf. 2.1.6). He computed the perturbations _i of the

coordinates:

I. By our second procedure (cf. 1.3.2}.

2. By Encke's method [6, page 176].

- There are more refined methods for numerlcat integration than Runge-Kutta (for

instance Feh_berg's method). If they need the derivatives of the perturbing forces,

regularized methods are not advantageous, since the transformations involved in

regu_arizatlon complicate the computation of such derivatives.
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2. COMPUTATIONALPROGRAMSFOR SPECIALANDGENERALPERTURBATIONS

WITH REGULARIZEDVARIABLES

by M. RSssler

2.1 The pro6ram NUMPER ("numerical perturbations")

This program (Appendix 2.1) is a synthesis of the companion procedures of the

second and third procedure described in sections 1.3.3 and 1.4. As perturbing force

only the gravitational influence of a third body is taken into account; for other

perturbing forces a special subroutine must be built in by the user. The motion of

the perturbing body is either assumed to be an unperturbed Kepler ellipse or it can

be given by an ephemeris. In the latter case interpolation is carried out by La-

grange's formula. Numerical integration is performed by the Runge-Kutta method.

2.1.1 List of symbols. The program is written in ALGOL 60,

cations of the symbols used in chapter I are needed.

real

therefore some modifi-

TO = instant of physical time attached to the given initial conditions.

H = total energy h of the particle per unit of mass at time TO (only

needed for ejection or near-ejection (cf. 1.3.4)).

M = gravitational parameter of the central body (product of gravitational

constant and mass).

XI,X2,X3 = coordinates of the particle in physical space.

R = distance of the particle from the central body in physical space.

VI,V2,V3 = components of velocity of the particle in physical space.

V = magnitude of velocity of the particle in physical space.

OM = _ {cf. (1,73)).

where (_j). and (_). are the e_ements of the Initla% osculating

Kepler orbit (cf. second procedure of chapter I).

MP = gravitational parameter of the perturbing body.

XPI,XP2,XP3 = coordinates of the perturbing body.

RP = distance of the perturbing body from the central body.

VPI,VP2,VP3 = components of velocity of the perturbing body.

VP = magnitude of velocity of the perturbing body.

OMP = angular ve_oclty of the perturbing body to be computed by the fo_%owin

modification of formula (1,73)

OMP)2 = (M+MP)/RP/2-VP*VP/4 ,

where RP and VP are initial distance and velocity.
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where _$ and _ are the e_ements of the Kepler orbit of the per-

turbing body.

The symbols in square brackets above and in what follows are only needed if the

perturbing body moves in a pure Kepler orbit.

TBEG = initia_ instant of the ephemeris of the perturbing body.

DTTAB step of the ephemeris.

TFL sca_ing factor for adaption of the unit of _ength in the ephemeris to
the unit of _ength in the program. (The coordinates XPI,XP2,XP3 are

obtained by multiplying the rectangular coordinates of the ephemeris
by this factor.)

The symbols in cur_y brackets above and in what follows are only needed if the

motion of the perturbing body is given by an ephemeris.

PI,P2,P3 = components of the perturbing force in physica_ space.

SUM = _-- qj_' , where qj and uj_ are the components of the perturbing

force and the velocity in parametric space.

A = seml-major axis of osculating orbit (only needed if the third proce-
dure is used (cf. 1.4}).

DR = A r = perturbation of the distance of the particle from the centra_

body (only needed if the second procedure is used (cf. 1.3.3}).

DS = step of Runge-Kutta integration (fictitious time).

TMAX = integration _imit (physica_ time).

S = fictitious (regularized) time of the particle.

SP = fictitious time of the perturbing body.

T = physlca_ time.

integer

N

TAB

EG

NOUT

= number of differentia_ equations to be integrated (for N = 10 the

companion procedure of the second procedure is carried out, and for
N = 9 the companion of the third procedure).

= number of entries in the ephemeris, diminished by one. I

J= degree of the Lagrangian interpolation polynomials.

after NOUT Runge-Kutta steps the physica_ time, coordinates and veloci-

ties and the perturbed e_ements of the particle are computed and

printed out.

boolean

NEARCENTRE : if true, the particle is assumed to start very near to the origin
or exactly at the origin (cf. 1.3.4}, then the va_ue of H is needed,
and V1,V2,V3 may be put in with an arbitrary sca_ing factor, so that

they indicate onSy the direction of initia_ velocity,

if fa_s_____e,norma_ initia_ conditions as described in the second
procedure.

array

= = etements of the initiat osculating Kepter
orbit.
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AL,BE[1:4]
U,DUDS[I :4]

uALP,BEP[ I :4]
P[1:4]

TAB [I :3, 0 :NTAB] = coordlnatesephemeris.

]LAM[0:NDE0]
[FCT[I:3]

= _j, _ = perturbed e%ements (varying with time).

= uj, 4' = parametric coordinates and ve%ocities of the parti-
c%e.

= _j. _j = e%ements of the perturbing body.

= parametric coordinates of the perturbing body.

(_k_ of the perturbing body taken from the

DEL[I:N]

Q[1:4]

G[I:N]

]
]

= _k = coefficients of Lagrange's interpo%ation formu%a.

= _(t) = Interpo%ated coordinates of the perturbing body. J
= either ( _mj,A@j, At, W ) if the second procedure (N = 10) is

used

or (A_j, A@j, At ) if the third procedure (N = 9) is used,

where A_j, A_j = perturbations of the e%ements, _t = pertur-

bation of time and W = work done by the perturbing force.

= components of the perturbing force in parametric space.

= right-hand sides of the dlfferentla% equations.

2.1.2 Under,ling formu%ae.

2.1.2.1 Inltla% conditions of._he__a_tic%e at instant T = TO :

a) NEARCENTRE = fa%se (norma% Inltla% conditions).

Given: initia% position XI,X2,X3 and initia% ve%ocity VI,V2,V3. We compute im-

mediate%y _ and the e%ements (_j)., (_), , choosing u, _ 0 or u_ -- 0

(cf. (1,47)), thus

R := SQRT(XI*XI+X2*X2+X3*X3); (2,1)

if Xl)0 then

AL0[I] := SQRT((R+XI)/2); AL0[2] := X2*ALO[I]/(R+XI);

AL0[3] := X3*AL0[1]/(R+X1); AL0[4] := O;

e%se (2,2)

AL0[2] := SQRT((R-XI)/2); AL0[1] := X2*AL0[2]/(R-XI);

ALO[3] :: 0; ALO[4] := X3*ALO[2]/(R-XI);

V := SQRT (V1,V1_V2*V2+V3*V3); (2,3)

0M :: SQRT(M/R/2-V*V/4);
%

BE0[I] := ( AL0[1]*VI+AL0[2]*V2+AL0[3]*V3)/OM/2; I

BE0 [2] := (-AL0 [2] *Vl +AL0 [I]*V2+ALO [4 ]*V3 )/OM/2;

BE0[3] :: (-AL0[3]*VI-AL0[4]*V2+AL0[I]*V3)/OM/2; (2,4)

BE0[4] :: ( ALO[4]*VI-AL0[3]*V2+ALO[2]*V3)/OM/2;

b) NEARCENTRE = tru_____e(start near the origin or exaet%y at the origin).

Given: H,XI,X2,X3 and Vl,V2,V3 down to an arbitrary sca%ing factor. We compute

R as in (2,1); 0M := SQRT(-H/2); V as in (2,3);

if R=0 then

AL0[I] :: AL0[2] :: AL0[3] :: AL0[4] :: O;

i__fV1)O then

BEO[I] :: SQRT((V+VI)*M/V)/0M/2; BEO[2] :: V2*BE0[I]/(V+Vl);

BE0[3] := V3*BE0[I]/(V+VI); BE0[4] := 0;

e%se
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BE0[2] := SQRT((V-VI)*M/V)/0M/2;BE0[1] := V2*BE0[2]/(V-VI);
BE0[3] := 0; BE0[4] := V3*BE0[2]/(V-VI);
e%se

ALO[1],AL0[2],ALO[3],ALO[4]according to (2,2);
true magnitudeof ve%ocityVCfrom
VC:= SQRT(2*M/R-4*OM*0M);
BEO[I],BE0[2],BE0[3],BE0[4]accordingto (2,4), but with the
true ve%ocitiesVI/V*VC,V2/V,VC,V3/V*VCinstead of VI,V2,V3.

In a%%caseswea%socompute
C1 := ( AL0[1] ?2+ALO[2] %2+AL013] _2+AL014] t2+BE0[1] t2+BE012] _2

+BE0 [3] _2+BEO [4 ] _2)/2;

C2 := ( AL0[1] $2+AL012] T2+ALO[3] t2+AL0[4] t2-BEO[1] t2-BE0[2] t2 (2,5)

-BE0 [3] _2-BE0 [4 ] _2)/2;

C3 := AL0[1]*BE0[1]+AL0[2]*BE0[2]+AL0[3]*BE0[3]+AL0[4]*BE0[4];

2.1.2.2 Perturbing body on a Kep%er orbit:

E%ements of the orbit as in 2.1.2.1 a), but rep%ace XI,X2,X3 by XPI,XP2,XP3;

V1,V2,V3 by VPI,VP2,VP3; AL0[I:4],BEO[I:4] by ALP[I:4],BEP[I:4]; OM by 0MP and

M by M+MP. Fina%%y compute CPI,CP2,CP3 as in (2,5), but rep%ace AL0[I:4],BEO[I:4]

by ALP[I:4],BEP[I:4].

Computation of the coordinates of the perturbing body at any time T:

So%ve the fo%%owing Kep%er equation with respect to SP

T-T0 = SP*CP1 +SIN (2*0MP*SP)/0MP/2.CP2+ (I-COS (2* 0MP.SP ))/0MP/2*CP3;

(In the program the so%ution of this equation is performed by Newton's method,

taking as initia% guess SP := (T-T0)/CPI-CP3/CPI/0MP/2).

for J := 1,2,3,4 do UP[J] := ALP[J]*COS(OMP*SP)+BEP[J]*SIN(0MP*SP);

XP1 := UP [1] ¢2-UP[2],2-UP[3] T2+UP[4]'t2;

XP2 := 2*(UP[1]*UP[2]-UP[3]*UP[4]);

XP3 := 2-(UP[I]*UP[3]+UP[2]*UP[4]);

2.1.2.3 Perturbing body given by ephemeris:

Lagrange interpo%ation coefficients _k "= ('_)"(_) • where 11 = NDEG, k running

from 0 to NDEG. In the program these coefficients are computed by recursion. At a

given instant T the coordinates FCT[I:3] of the perturbing body are computed by

Lagrange's formu%a; the program chooses the tabu%ar va%ues to be used for this pur-

pose.

2.1 2 4 Right-hand sides G[I:N] of the dlfferentia% equations:

(For any va%ue of the independent variab%e S and the corresponding array DEL[I:N]).

T := T0+C1.S+C2*SIN(2*0M*S)/0M/2+C3* (1-COS (2*OM*S))/0M/2+DEL[9] ;

for this time T compute the position XPI,XP2,XP3 of the perturbing body ac-

cording to section 2.1.2.2 or 2.1.2.3.

Perturbed e%ements : AL [J] := ALO [J] +DEL [J] ;

BE[J] := BE0[J]+DEL[J+4]; (J := 1,2,3,4)

Parameters of the partic%e: U[J] := AL[J]*COS(0M.S)+BE[J]*SIN(0M.S);

Parametric velocities : DUDS [J] := 0M* (-AL [J]*SIN (0M*S)+BE [J]*COS (0M.S)) ;

Distance of the partic%e from the centra% body: R := U[I]t2+U[2]#2+U[31%2

+u [4]t2
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Coordinates

X2 :=

Computation of the perturbing force:

DENt :: ((X1-XPI)$2+(X2-XP2)t2+(X3-XP3)$2)$1.5;

DEN2 := (XPI_2+XP2_2+XP372)?I.5;

in physica% space: PI := -MP*((XI-XPI)/DENI+XPI/DEN2);

of the particle: XI := U[1]'I2-U[211"2-U[3]'I2+U[4]t2;

2*(U[1]*U[2]-U[3]*U[4]); X3 := 2*(U[I]*U[3]+U[2]*U[4]);

SUM := Q[I].DUDS[1]+Q[2]*DUDS

if N=I0 (companion of the second

DEL[J]' = G[J]; (J = 1..... N)

(where the accent means differentiation with respect to S).

Integration is performed by a Runge-Kutta subroutine.

2.1.2.6 0ut_}_f2£T_as:

T, XI,X2,X3,AL[I:4],BE[I:4] as computed in 2.1.2.4.

Velocities of the particle in physica_ space (if R_O):

if N=I0 then

[2 ] +Q [3 ] *DUDS [3 ] +Q [4 ] *.DUDS [4 ] ;

procedure) then

G[J] := -(R*.Q[J]+2*.DEL[10]*U[J] )/0M/4*SIN(0M*S);

G[J+4] := (R*Q[J]+2*DEL[IO]*.U[J])/OM/4*COS(0M*.S); (J := 1,2,3,4)

Computation of the perturbation of distance DR:

hAL2 := (2*AL0 Ill+DELl I] )*.DEL[ I]+ (2.AL0 [2] +DEL [2] )*.DEL [2]

+ (2*.AL0 [3] +DEL [3] )*.DEL [3] + (2*ALO [4 ]+DEL [4 ] )*.DEL [4 ];

DBE2 := (2.BE0 [1]+DEL [5] )*.DEn [5] + (2*.BEO [2]+DEL [6] ).DEL [6]

+ (2*.BE0 [3] +DEL [7] )*DEL [7 ]+ (2*BEO [4]+DEL [8] )*DEL [8] ;

DALBE := ALO [I]*DEL [5] +BEO [I]*.DEL[I ]+DEL [1] *DEL [5] +ALO [2].DEL [6]

+BEO [2] .DEL [2] +DEL [2] *DEL [6] +ALO [3] *DEL [7] +BEO [3] *DEL [3]

+DEL [3] *.DEL [7] +AL0 [4 ]*DEL [8] +BEO [4 ]*DEL [4 ]+DEL [4 ].DEL [8] ;

DR := (DAL2+DBE2)/2+ (DAL2-DBE2)/2*.COS (2*.OM*S)+DALBE*SIN (2*.0M.S) ;

G [9] := DR;

a[1o] := SUM;

e%se (companion of the third procedure)

semi-major axis A of the oscu%ating orbit:

A := (AL[1]t2+AL[2]_2+AL[3]t2+AL[4]t2+BE[I]_2+BE[2]t2+BE[3]_2+BE[4]_2)/2;

G[J] := -A/CI*. (R*.Q [J] +DUDS [J] .SUM/QM/OM)/OM/4*.SIN (0M-S) ;

G[J+4] := A/CI*.(R.Q[J]+DUDS[J]*SUM/0M/OM)/OM/4*COS(OM*S); (J := 1,2,3,4)

G[9] := SQRT (A/CI).R- (C I+C2..COS (2..0M*.S) +C3*.SIN (2*0M'S)) ;

Vl :: 2/R*.(U[1]*.DUDS[1]-U[2]*DUDS[2]-U[3]*.DUDS[3]+U[4]*DUDS[4]);

V2 := 2/R*.(U[I]*DUDS[2]+U[2]*DUDS[I]-U[3]*.DUDS[4]-U[4]*DUDS[3]);

V3 := 2/R* (U [I]*.DUDS [3] +U [2] *DUDS [4 ]+U [3] *.DUDS [I]+U [4 ]*DUDS [2] )

P2 := -MP*. ((X2-XP2)/DENI+XP2/DEN2) ;

P3 :: -MP*. ((X3-XP3)/DENI+XP3/DEN2) ;

in parametric space: Q[I] := 2*.( U[I]*.PI+U[2]*P2+U[3]*P3);

Q[2] := 2*.(-U[2]*PI+U[1]*.P2+U[4]*P3);

Q[3] := 2*(-U[3]*.P1-U[4]*.P2+U[1]*P3);

Q[4] := 2*.( U[4]*PI-U[3]*.P2+U[2]*P3);

Computation of SUM = _--qjuj' :
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else computeVI,V2,V3as for N=I0, but with the factor
e/R,SQRT(CI/A)instead of 2/R.

i__fN=I0 the_._.nthe left- and right-hand sides of the equation (1,97)
R*DEL[I O] = 2*0Mte* ((2.AL0 [1] +DEL [I ] )*DEL [I]+ (2*AL0 [2] +DEL [2] ).DEL [2]

+ (2*AL0 [3] +DEL [3] )*DEL [3] + (2*A %0 [4 ]+DEL [4 ] ).DEL [4]+ (2*BE0 [I]+DEL [5] )*DEL [5]

+ (2*BEO [2] +DEL [6] )*DEL [6] + (2*BEO [3] +DEL [7] )*DEL [7] + (2-BEO [4]+DEL [8] )*DEL [8] )

are computed and printed out as check.

2.1.3 Input and output. Because ALGOL 60 does not include input and output, the

following description refers to our experiments on a Control Data 1604-A computer

[8].

At first the units of length, mass and time must be chosen; they are arbitrary. The

input is listed on punched cards in the fol%owlng sequence, with the values being

legal ALGOL numbers (arbitrary signed or unsigned, decimal or exponent notation),

except for the boolean variable NEARCENTRE, where the value must be a plus (=false)

or a minus (=true) sign. Each value must be followed by a comma; the number of val-

ues per card, the length of the numbers, and the number of spaces are arbitrary.

Symbol used

in the program input

N

NEARCENTRE

TO

M

X1,X2,X3

V1,V2,V3

MP

NTAB

if NTAB=0 then

XPI,XP2,XP3

VPI,VP2,VP3

else

li EG

EG

TTAB

FL

Set =10, if companion of the second procedure is desired,

set = 9, if companion of the third procedure is desired.

Set true or false according to the rules outlined in the

list of symbols.

Initial time.

Value of initial energy, only to be set if NEARCENTRE=true_

Gravitational parameter of the central body.

Initial coordinates of the particle at time TO.

Components of initial velocity of the particle at time TO.

(Observe modification indicated in the list of symbols if

NEARCENTRE=true).

Gravitational parameter of the perturbing body.

Set =0, if the perturbing body is moving in a pure Kepler

orbit with given initial data.

Set =NTAB (as described in list of symbols), if the motion

of the perturbing body is taken from an ephemeris.

Initial coordinates of the perturbing body at time TO. ]

JComponents of velocity of the perturbing body at time TO.

Degree of the Lagrange polynomials for interpolation in

the ephemeris.

Initial instant of the ephemeris.

Step of the ephemeris.

Value of scaling factor.
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TAB [I, 0l, TAB [2, 0], TAB [3, 0] I_

JTAB [I, NTAB], TAB [2, NTAB], TAB [3, NTAB]

DS

NOUT

TMAX

Taken from the ephemeris.

Step of integration.

Set according to the tlst of symbols.

Approximate fast time of wanted partl-

ore position.

Remarks:

a) Choice of DS: An appropriate step T in physicat time is chosen, and DS com-

puted from DS = _T , where r is the medium distance expected during the un-

perturbed motion of the partlc_e.

b) If Inltia_ data are of parabolic or hyperbolic type, the machine gives a red

tight.

c) If the information detlvered by the ephemeris is not sufficient to carry out the

Lagrange interpo_atlon, the machine gives a red tight.

½ NDEG tabutar values shoutd be avaitabte before the start ofTherefore at _east

partlc_e TO and after its wanted end position TMAX.

2zlz3z2___0u_tput: (Appendix 2.2)

For checking purposes some of the input data as weft as some other important quan-

tities are printed out immedlate%y in the for%owing order.

I.) i__fN=10 (second procedure) the___nthe basic ru%e of regutarlzation is printed out

DT = R*DS,

e%se (third procedure) the corresponding ru%e

DT = SQRT(A/A0)*R*DS,

is tlsted.

2.) TO and M are printed out.

3.) Information concerning the partlc_e (referred to as "satellite"): Initla_ coor-

dinates and vetocltles and perhaps energy (different versions depending upon,

whether NEARCENTRE=true or =false), semi-major axis, eccentricity and period of

revolution corresponding to the unperturbed orbit.

4.) Information concerning the perturbing body:

if NTAB=0 (pure Kepler orbit) the____nnmass,initiat coordinates and velocities,
-- semi-major axis, eccentricity, period of

revotution,

e_se (ephemeris) mass, ephemeris adapted to the
--unit of tength used in the program.

5.) Step of integration DS and vatue of NOUT.

The resutts of the integration are _isted as fot_ows

Ist column: physiea_ time T.

2nd column: physicat coordinates Xl,X2,X3 of the particte.

3rd column: components of velocity VI,V2,V3 of the partlc_e. (If co_lision occurs,

the components indicate onty the direction of vetocity, because the

magnitude of the velocity is infinite.)

4 th column: perturbed etements ALPHA[J].

5th column: perturbed etements BETA[J]. (J = 1,2,3,4)

If N=IO (second procedure), a 6 th cotumn is printed out containing in the first
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%inethe quantity rW = R*DEL[10] of equation (1,97) and in the sec-

ond %ine the rlght-hand side of that equation. This is the energy check.

2.1.4 Description of the program NUMPER. We glve a rough description of the parts

of the program. The fo%%owlng numbers of the parts correspond to the numbers on the

%eft-hand border of Appendix 2.__!I.

part I: Dec_aratlons of the quantities under consideration. NFCT is %ater rep%aced

by 3.

part 2: procedure REGEL: computation of the regu%arlzed inltla% e%ements taking

into account the different modifications (NEARCENTRE = true or = fa%se),

computation of the auxiliary quantities CI,C2,C3.

The same procedure is used for computing the e%ements of the perturbing

body if assumed to move in a Kepler orbit.

part 3: Read in of most of the data. Activation of procedure REGEL with respect to

the partlc%e.

part 4: Some dec%aratlons; CS and SN are symbo%s for cosine and sine, VF is an

auxi%lary varlab%e.

procedure LAINTAB determines the set of tabu%ar va%ues of the ephemeris to

be chosen for Interpo%ation at a given time T and carries out this inter-

po%atlon. We do not exp%aln this procedure in detai% because it is a

standard Interpo%atlon routine.

part 5: procedure RKIST is the standard Rtunge-Kutta routine of fourth order.

H is the step.

part 6: procedure F is the computation of the rlght-hand sides G[I:N] of the dlf-

ferentla% equations. This procedure runs unti% the end of part 11.

part 7: Coordinates of the perturbing body if assumed to move on a Kep%er e%%ipse.

This part Inc%udes the so%utlon of the Kep%er equation by Newton's method.

part 8: Coordinates of the perturbing body if an ephemeris is used; procedure

LAINTAB is activated.

part 9: Computation of the coordinates of the partle_e and of the perturbing force

in physlea_ and parametric space.

Right-hand sides G[1:10] of the dlfferentla% equations, if N = 10 (2nd

procedure).

Right-hand sides G[I: 9] of the dlfferentla% equations, if N = 9 (3rd

procedure).

Read in of the remaining data concerning the perturbing body. Computation

of either the e%ements of the perturbing body (activation of REGEL) or the

L_[O:_EG].

Computation of the output data: physlea% time, eoordlnates and ve%ocltles

of the partlc%e, va%ues of the e%ements at the time under consideration,

as was exp%alned in 2.1,3.2.

Integration %cop.

Information if errors occur.

part 10:

part 11:

part 12:

part 13:

part 14:

part 15:
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Remarks:
For input andoutput the specla%proceduresREADand OUTPUTand the dec%aration
forma______t,whichare not inc%udedin ALGOL60, are usedrepeated%yas is the customon
our Contro%Data1604-Asystem.Detai%sabout these input -output faci%itles canbe
found in the reference [8]. Appropriate adaptlons mustbe madeif the programis
used on another computer•

2.1_ First numerica% examp%e: Perturbations of a hlgh%y eccentric sate%%ite orbit

b_ the moon. (Appendix 2.2).

21_1_:1 Program:

The fo%%owlng version of program NUMPER (cf. 2.1) was used.

N = 10 (companion of the second procedure (cf. 1.3.3)),

NEARCENTRE = tru____e(start of the partic%e near the centre of the earth),

NTAB _ 0 (motion of the moon given by ephemeris)•

2.1.5.2 Configuration (Fig. 2.__!1):

Attracting centre = earth, at the origin of the _.×,.Xm -system,

partlc%e: unperturbed orbit = e%%ipse in the ×4.xl -p%ane with high eccentricity,

perturbing body = moon, orbit taken from the ephemeris [9]•

2.1.5.3 Units:

Length: 1 km, mass: I kg, time: I mean so%at day.

The gravltatlona% parameters are M = 2.965621833"1015, MP 3.637460852 1013

2zlz_.4 Initla% coordinates of the partic%e:

TO = O,

H = - 1010 corresponding to the seml-major axis 148 281.09165

(Xl,X2,XB) = (1o ooo,o,o),

direction of initla% ve%ocity (VI,V2,V3) = (0,0,1)•

This initla% position is the perlcentre of the unperturbed orbit. The eccentricity

is 0•932560518 and the period of revo%ution 6.58795532 •

2.1.5.5 E_2TSE!___f__hS_T22_:

The x4,× 2 -ptane is the equator of the earth corresponding to the epoch 1966.0 .

The ephemeris gives XP1,XP2,XP3 with an accuracy of 7-8 decima%s and with a time-

step of 0.5 days• The unit of %ength of the ephemeris is the mean radius of the

earth, thus TFL = 6 367.672608 .

We choose NTAB = 32, NDEG = 6, TBEG = -3, DTTAB = 0.5 •

The initial time TO = 0 is the date 243 8941.0 J.D. (= Jan. 4.0, 1966) of the

origina% ephemeris.

2z_z_.6 Parameters of integration:

DS = 10 -6 (approximate%y 45 steps per revo%utlon),

NOUT = I ,

TMAX = 10 (approximate%y 1.5 revo%utions).

2.1.5.7 Remarks:

For this satel%ite the inf%uence of the moon is the most important perturbation•

The unperturbed orbit is we%% outside the atmosphere and in the interior of the
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moon's orbit. In Fig. 2.1 corresponding positions of the particle and of the moon

are indicated (step = I day of physical time).

2.1.5.8 Discussion of the numerical results:

The results are listed in Appendix 2.2. The perturbed orbit is plotted In Fig. 2.2

with the points indicating the equidistant values of S. The physical time corre-

sponding to each point is indicated. From this p_ot the automatic re6ulation 0f the

step _ength performed by the fictitious time can be seen (near the peri- and apo-

centre the points are much denser than e_sewhere).

A smaller integration step does not pay off, because the error produced by the

ephemeris then becomes dominant. However, the integration with a smaller step would

improve the balance of the energy equation.

After the first revolution, the satellite has lost about 1.9% of its inltla_ energy,

causing its perieentre to move closer to the earth.

2.1.6 Comparison with the c_assical method of Encke. In order to explain briefly

Eneke's method, we introduce the following notations:

Xi, r = coordinates and distance of the particle in the perturbed orbit,

XiK ' rK = coordinates and distance of the particle in the unperturbed Kepler
orbit,

/_X_ = X_- X_ K , At= r-r K = perturbations,

_i, r = coordinates and distance of the perturbing body,

M, M = gravitational parameters of the central and the perturbing body re-
spectively,

= distance of the particle from the perturbing body.

The c_asslcal differential equations for the _×_ are

(rK+Ar)) M ( x;K _3 4-

and the independent variable is the physical time t .

In the following examples either a constant step was chosen or an automatic step

regulation was put into operation. Integration was performed by writing the differ-

ential equations (2,6) as a system of six simultaneous equations of first order and

using the same Runge-Kutta method as in the program NUMPER.

2.1.6.1 Second numerical example:

Perturbations of a highly eccentric sate_llte orbit by the moon. Units: km, kg, day.

_I = 2.9800083.1015 , M = 3.6656343"1013 . Initial conditions: satellite on the

positive x 3-axis at distance 10 000 km, initial velocity parallel to x t -axis of

magnitude 750 000 km per day (eccentricity of the unperturbed orbit • _0.89).

Moon on a circular orbit of radius 384 400 km in the x4.xz -plane; initial posi-

tion on the positive ×4-axis.

For t = 3.1841455 days (about one revo_utlon) the foltowing results were obtained.
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Tab%e 2.1. Comparison of NUMPER with Encke's method for highly eccentric orbit.

number step %ength DS,
method of steps At resp. ×_ ×* ×I

NUMPER 2 DS = 2"10- 5 60.00 35 379.12 _33

8 5"IO-_ 8o.98 35 4o0.52 -33
40 1 .lO-_ 80.99 35 400.52 -33

200 2"10-" 80.99 35 400.52 -33

16 At = 0.2 26.47 62 365.72 -37 286.08
64 0.05 15.58 22 144.64 -36 560.63

319 0.01 81.03 35 439.95 -33 960.81

1593 0.002 80.99 35 400.74 -33 911.40

46 0.152) At )0.0047 81.00 35 404.30 -33 915.00
103 0.152 0.00119 80.99 35 400.64 -33 911.33
272 0.038 O.OO059 80.99 35 400.50 -33 911.35
356 0.025 0.00040 8o.99 35 400.52 -33 911.35

Encke

constant step

Encke

regu%ated step

888.55
911.38
911.34
911.34

Conc%usions: The Encke-method with constant step needs at %east 1593 steps to ob-

tain the accuracy of 8 steps of the regu_arlzing method and can therefore not be

recommended. With automatic step regulation the corresponding number of Encke-steps

is reduced to about 100. A%though one step of the regu%arlzing method needs about

3 times as much computing time as an Encke-step, the regu_arization does accelerate

great%y the computation of the orbit.

2.1.6.2 Third numerica_ example:

Perturbations of an a%most circular satellite orbit with high inclination. Units

and masses as in the second examp%e. Initla% conditions: sate_%ite on the positive

Xs -axis at distance 75 000 km, initia_ ve%ocity paraS%e% to ×2 -axis of magnitude

200 000 km per day (eccentricity _ 0.007). Moon as in the second examp%e.

For t = 3.0176050 days (about one revo_utlon) the fo_%owing results were obtained.

Table 2.2. Comparison of NUMPER with Encke's method for a near%y clrcu%ar orbit.

number step _ength DS,
method of steps At resp. x4 ×, )_I

ROMPER 2 DS = 2"10 -5 -6.31 75 162.85 _7

8 5"I0-_ 4.37 75 171.71 -7
40 I "IO-Z 4.34 75 171.72 -7

200 2.10 -( 4.34 75 171.72 -7

502.45
510.35
510.34
510.34

Encke 16 At = 0.2 4.33 75 173.26 -7 508.02

constant step 61 0.05 4.34 75 171.72 -7 510.33
302 0.01 4.34 75 171.72 -7 510.34

1509 0.002 4.34 75 171.72 -7 510.34

Conc%uslons: Because the unperturbed orbit is a%most a circ%e, an automatic regu_a-

tlon of the Encke-steps wou_d not give an improvement worth mentioning. Therefore

a constant step was chosen, making the Encke-method as fast as possib%e. Four _hqcke

steps give about the same accuracy as one step of the regu%arlzing method, and the

corresponding machine times are a%most the same.

Remark: The program NUMPER wi%% a_so be used in sections 2.2.5.2 and 2.2.5.3.



- 59 -

2.2 The program ANPER ("ana_ytica_ perturbations")

This program (Appendix 2.3) computes the flrst-order perturbations of the e%e-

ments _j, _j (j_ 4,Z.3,_) (oscu%ating Kep%er orbit) and of the physica% time t

according to section 1.5 (fourth procedure) of this report. It takes on%y into ac-

count the perturbations by a third body assumed to move on a pure Kep%er orbit. The

perturbations are eva%uated by doub%e harmonic ana%ysis.

2.2.1 The independent variab%es. Instead of the variab%es s,s4 used in the theo-

retica% ana%ysis of section 1.5, we introduce modified variab%es which are better

adapted to numerica% computation. Let E be the eccentric anoma%y of the partio%e

on its unperturbed orbit and

account, we have

E

Thus the definition of

E. the initia% va%ue of E . By taking (1,87) into

= Eo + 2_s

s4 in section 1.5.2 is modlfled to read

(2,7)

where

purpose the mean anoma%ies

mo,m--o . We can write

m,_

s4 = _ (E- Eo)
2w

co is re_ated to the mean angular velocity _ of the particle by (1,84)(1,85);

therefore

-- _ (E- E.) (2,8)$4

As can be seen from (1,129), the integrands f now have the period 2_ in both of

the variables E and s_ . This property stile ho_ds true if any constant is added

to s4 ; thus instead of s4 we may use the variable

E4 == _ E + c , (2,9)

c is a constant to be determined in the fo_owing. We introduce for this

of our bodies as we_t as their initia_ values

- -

-= (_.-_mo)- c + E4- _._e sine (2,1o)

• is the eoeentriolty of the partlcl, ets orbit, and Kepl,er's equation has been in-

serted. We choose now c-_ _o---_ rno )then (2,9)(2,10) are reduced to

(211>

-, E,, - "_ esin E (2,12)
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As follows from the fast equation (2,12), this choice has the advantage that E_

is, apart from a pure periodic term, the mean anomaly of the perturbing body. As in

the theoretlca_ section 1.5 the dynamic situation is determined by the two inde-

pendent variables E. 54 , because any choice of E determines the position of the

particle and then any chosen va_ue of E4 yields by (2,12) the mean anomaiy of the

perturbing body. With respect to either of the two variabtes E, E 4 the fundamen-

tat period is 2_ and is divided into 2N equa_ parts for performing the harmonic

analysis.

2.2.2 The e_ements. In order to facititate the comparison of the regularized com-

putations with ctassica_ resutts, we introduce the etements corresponding to the

pericentres of the two orbits; however, the initiat positions of the two bodies re-

main genera_ and are a_owed to be different from the pericentres. From (1,76) and

(1,87) the coordinates of the particle at instant t - s - O are obtained as fol-

lows

(2,13)

where (_J)a, (_)R are the e_ements corresponding to the pericentre of the oscu-

lating orbit at instant _ ffi0 (the subscript R is meant to signify "reduced to

the pericentre"). By solving (2,13) with respect to the reduced e_ements we have

(o_B,- (Ui)ocos - _ (ui).sin , (pj),= (uj).sin -+_
and

(1,87) _ (_'i),_ (_j)'_ = 0
j,,, ,t

, (2,14)

The same reduction is performed for the perturbing body by introducing the reduced

etements

-' - - -' (2,15)

ANPER computes the perturbations A_i, A_j of the reduced etements (_i),, (_j)R

according to the formulae (cf. fourth procedure, section 1.5.1.)

E

Eo

E

= _ cos dE

_Q

It computes atso the perturbation of time (cf. (1,116)}

E

(At + _-_.

Any of the eight perturbations of the e_ements appears in the form of a double

Fourier po_ynomia_ with a secular term
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the coefficients c, av,. by. are printed out. This formula is analogous to

(1,128a). The perturbation of time At appears in a more complicated form

c,(E-Eo) + c2(E cosE- E,,cosE.)+ c,(EsinE - E.s(nE.)

w-4 ,N._w.[ }1 (2,17)+ 7-- my. cos (vE ÷ nE,) + by. sin (vE + hE,
'_tO - 4

As above, 2N is the number of grid points of the harmonic analysis. A_ these nine

perturbations vanish for t=O , that is to say for E = Eo •

ANPER performs also the summation of the Fourler-series for a given value of E ,

and the perturbed elements (mj)R+ Amj , (_J)t + A_j as well as the perturbed time

tK + At are printed out. The coordinates of the particle - if needed - could be

computed by hand as follows

the coordinates X; in the physica_ space are then determined by (1,44).

2.2.3 Rules for the user. ANPER is written in ALGOL 60. We do not describe this

program in detail as we did for NUMPER but restrict ourselves to recording the in-

and output specifications. Again the special procedures READ and OUTPUT, the dec_a-

ration format and furthermore the procedures BINWRITE and BINREAD for handting the

tapes are used. They are not included in ALGOL 60, but only defined on our Contro_

Data 1604-A system [8]; appropriate adaptlons must be made if the program is used

on another computer.

2.2.3.1 I_:

Units of _ength, mass and time are arbitrary.

Before going to an electronic machine the user has to compute:

- Initial coordinates and velocities of the particle at time t = 0 in physical

space, (ev. given by classical orblta_ elements),

- initia_ position and velocities of the particle in parametric space as in the

second procedure (section 1.3.2),

- the va_ue Eo of the eccentric anomaly corresponding to the initial position

from the classical formulae of Kepler motion,

- initia_ values of the e_ements (_j)R , (_)R from (2,14);

- the same work has to be carried out with respect to the perturbing body

( E. , (_j),, (_)A)
The input is _isted on punched cards in the following sequence; the values must be

lega_ ALGOL numbers, each of them followed by a comma. The number of values per

card, the _ength of the numbers, and the number of spaces are arbitrary.
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Symbo% used in the program Symbo_ used in the under%ying theory 2.2.1,2.2.2.

M

EO

AL0 [I], AL0 [2], ALO [3], AL0 [4 ]

BEO [I ], BE0 [2], BEO [3], BE0 [4 ]

MS

ESO

ALS [I], ALS [2], ALS [3], ALS [4 ]

BES [I], DES [2], BES [3], BES [4 ]

JKMAX

TF, TFT

I

(I va%ues)

2.2.3.2 Output: (Appendix 2.4)

a)

b)

c)

M = gravitationa% parameter of the centra% body
(product of mass and gravitationa% constant).

E. = eccentric anoma%y of the particle at ini-
tia% time t = 0.

(_j)R_ = reduced e_ements of the particle at the

(_j)_J pericentre of the unperturbed orbit.

= gravitationa_ parameter of the perturbing

body.

E--.= eccentric anoma%y of the perturbing body at
initia% time t= 0 .

(_J)i_ = reduced e%ements of the perturbing body

(_)_J at the pericentre of the orbit.

N, (2N is the number of points on the two or-
bits used for the harmonic ana%ysis).

Sca%ing factors for the %isting of the Fourier
coefficients; every coefficient of the perturba-

tion of an e%ement is mu%tip%ied by TF, every
coefficient of the perturbation of time is mu%ti-

p%ied by TFT, when it is printed out.
(The %argest coefficients shou%d have the order

of magnitude 1011.)

Summation of the Fourier-series: number of summa-

tions to be carried out.

Va%ues of E for which the summation is desired.

For checking puzcposes at the be_i__}in_of the computation:

The fo%%owing information is printed out:

M, E0,ALO[I],AL0[2],AL0[3],AL0[4] ,BE0[I],BEO[2] ,BE0[3],BE0[4],

A0 = semi-major axis of particle's oscu%ating orbit at instant t= 0 .

EXZ0 = eccentricity of partic%e's oscu%ating orbit at instant t = 0 .

formu%a for computing the unperturbed Kepler time f_ (denoted by T),

MS,ES0,ALS[I],ALS [2],ALS[3],ALS [4],BES[I],DES[2],BES[3],BES[4],

AS = semi-major axis of the orbit of the perturbing body,

EXZS = eccentricity of the orbit of the perturbing body,

formu%a for computing the Kep%er time,

JKMAX,

equation (2,11) (with the numerica% va%ues of _ and m--.-_m.
).

Investigation of resonance: (cf. 1.5.2)

For any va%ue of the subscript _ (formu%ae (2,16)(2,17)) the va%ue of v_n_

which is nearest to 0 is printed out ( n is the second summation index and /_ ,

are the mean angu%ar motions). However, the information is suppressed if

this minimum of ]v+n_] is %arger than for a preceding va%ue of v .

Fourier-series of the perturbations:

In Appendix 2.4 the perturbations A_j._i. At of the e%ements and of the

time are denoted by D ALPHA I, .... ,D ALPHA 4,D BETA I, .... ,D BETA 4,DT.

Perturbation of the e%ements: after D ALPHA (or D BETA) the chosen sca%ing
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d)

factor TF is printed out. It follows the secutar term; in the _ist of the

Fourier coefficients the first and second columns indicate the values of v and

h , while the third and fourth columns contain the cosine and sine coefficients

(cf. (2,16)).

Perturbation of the time: after DT the scaling factor TFT is printed out. The

secular terms appear in the form (2,17), and the periodic terms are printed out

according to the same pattern as for the perturbation of the e_ements.

Summation of the Fourler-series:

In the first column the chosen vatues of the independent variable E are listed

again. The second column contains the unperturbed values of the elements and the

Kepler time _ , the third column the perturbations of the elements and of the

time, and the fourth column the perturbed values of the etements and of the time.

2.2.4 Remarks. Concerning an appropriate choice for the number N used for the

harmonic ana_ysls we may give the fo_lowlng rough guess. Let a be the semi-major

axis of the orbit of the particle, _ the minlmat distance between the two orbits

and d the number of wanted significant decimals of the perturbations; then choose

at least

N = itog l ,
where [o9 is the Brlggsian _ogarithm.

2.2._ Fourth numerica_ example: Perturbations computed by four different methods.

2.2.5.1 Configuration: (Fig. 2.3)

x!

majoraxis

theparticle

orbit of the
perturbing body

(not in scole)

Fig. 2.___B. Fourth example. Configuration.
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Centra_body: at the origin• gravitationa_ parameter M = 1.
Perturbing body: M = 0.01. The orbit is a circle in the ×_.W_-p_aneof radius

E = 18. Initia_ position (0•0•18)• Initia_ velocity (0• 0.23687784006 •0).

The corresponding e_ements are 74 = 3• _ = O• _ = 3• _ = O• _ = O•

_2 = 3• _i = O, _ = -3 and coincide with their reduced values (_J)a •

(_j)g ; therefore _o = 0.

Partle_e: the unperturbed orbit is an e_ipse with the semi-major axis m = 3• ec-

centricity • = 0.5• inclination 39.7 ° to the x_.x 3 -p_ane• start at the peri-

l
centre (E, 0) Initia_ position (- _ 0•_)• initia_ velocity (2_'_ _'2_

) The unperturbed e_ements are _4 _ O,
-_ • - 2 " _ = O, _3 = 1, _ =

4_
_4 = I, _I = 1, _ = ---_ , _, = - _ and coincide with the reduced e_e-

merits (_j)a • (_)a ; furthermore the two parameters 0-, T introduced in sec-

tion 1.6.3 are _ = - _ , T - 3 "

2.2.5.2 First method. Companion of the second procedure _£_&2___z_z_:

Program NUMPER.

Input data: N = I0, NEARCENTRE = fa_s_____e,TO = O, NTAB = O, DS = 0.1 _ (correspond-

ing to a step 0.1 of E ) (approximately 63 steps per revolution), NOUT = I,

TMAX = 500 (about 15 revolutions of the particle, and about I revolution of

the perturbing body).

The purpose of this computationa_ example is to discuss the goodness of the ene___e_

ba%ance (cf. 1.3.3, 2.1.2.6 and 2.1.3.2). In Fig. 2.____4the quantity

(1,97)

is ptotted against E - 2_s . At the end E = 96 we read for this quantity the

vatue 3.61"I0-11• the corresponding va_ue of rW is - 3.07681-10 -5 , and thus the

relative error of the energy check is about 10 -6 . This is a satisfactory resutt.

2nEll.3 Second method. Companion of the third procedure _section 1.4):

Program NUMPER.

Input data: N = 9, NEARCENTRE = fa_s_.___ee,TO = O, NTAB = 0, DS = 0.1 _ (correspond-

ing to a step 0.1 of E ) (approximately 63 steps per revolution), NOUT = 5,

TMAX = 500 (about 15 revolutions of the particle, and about I revolution of

the perturbing body).

The resutts of this computation are disptayed in two ways. First• the perturbations

A_, A_, At corresponding to E = 80 (about 13 revolutions of the particle) are

tabulated in Tab_______e2.___Bunder the heading NUMPER. Second• the perturbations A_

and _ are p_otted in Fig. 2.5 and Fig. 2.___6against E .
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Ta__b_e 2.3. Comparison of specia% perturbations and first-order genera%

perturbations.

NUMPER ANPER

E = 80

A_4 = 0.00072460
A_2 = -0,00255181

a_ = 0,00169407

A_ = 0.00033265

A_I = -0.00055131

Ap: = 0.00049547

A83 = 0.00O45080
A_, = 0.00137048

At = 0,021224

E = 80

&_4 = 0,00073163

A_x_ = -0,00254940

A_, = 0.00169465
A_ = 0,00031953

a_4 = -o.o0o55o84

A@_ = 0.00049473

A _, = 0. 0004 5364

a@, = 0,00136828

At = 0,021180

I •001

CRLCULFITED WllH PRBGPIRMNUMPfiR: 1
-. no2 t

5ECULRR TERM FRRM PR@GRRMFtNPER: 2

5ECULRPI TERM FRI_IM (lf1491:3

Fig. 2.5. Fourth examp%e. Perturbation _2"

•002
CRI-CULRTEE] WJIM PRRGRRM NUMPER; t

5ECULRFI TERM FRRM pR@Gp4ZtMRNPER: 2 I

.ooJ 5ECULFIR TERM FPIt_M [It1491 : 3

1 _6 20 -]o _B s6 .6 ,6 io- - - _ i:"

' ,N.JnI'RVl_mN_j
I
[-.nul _F TH_ M_ON

Flg. 2.6. Fourth example. Perturbation _ _.
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_:_:_:!___!£___2}_£_:__!Z_!_!_f!_}:_!___2£}_£_!2_: (Appendix 2.4.)

Program ANPER.

Input data: EO = O, ES0 = O, JKMAX = 13, TF = TFT = 1014 , I = I, E = 80.

The second and third methods are used to compare the numerica% and first-order ana-

%ytica% perturbations. Again the resu%ts of the third method are _isted in Tab%e

2.:3 (under the heading ANPER); the corresponding p%ot in Fig. 2.5 and Fig. 2.6 co-

incides practicat%y with the p%0t of the second method. Furthermore the secu%ar per-

turbations are %isted in Tab%e 2.4 under the heading ANPER, and the secu%ar pertur-

bations of A_2 and _ are p%otted in Fig. 2.5 and Fig. 2.6 as straight %ines.

Appendix 2.4 is a part of the resu%ts output by the Contro% Data 1604-A.

2.2.5.5 Fourth method. Secu%ar perturbations according to the formu%ae (_zl_!:

The resu%ts are %isted in Tab%e 2.4 under the heading (1,149) and p%otted (for _ml

and _@_) in Fig. 2.5 and Fig. 2.6. Because the ratio of the major axes is rather

sma%%, the results of this rough computation have an acceptab%e accuracy; they co-

incide with the resu%ts of ANPER within a re%atlve error of about 4%.

Tab%e 2.4. Secu%ar perturbations.

ANPER (1,149)

A_, = 0.27595.10-5E a_, = o.19290.10-5E
Am, = -3.77738.10-5 E A_, = -3.66512.10-5E

A_, = 2.00678.10-5 E A_, = 1.91096"10-5E
A_ = 0.60747.10-5 E _ = 0.68200"10-5

A@, = -0.72616.10-5 E a_ = -0.68200.10-5 E
A_, = 0.66424.10-5 E A@, = 0.68200-10-5E

_ = 0.20442-10-5 E A _ = 0.19290.10-5
A@_ = 1.41098-10-5 E A_, = 1.35031.10-5E

At = 3.81647-10 -4 E
+1.05457"10 -4 E_E
+0.76276.10 -4 _,i,E

2.2.6

an e_ection orbit.

2.2.6.1 Configuration: (Fig. 2.7)

x_

orbit of the particle: I : ejection orbit
2 = circular orbit

Fifth numerica% examp%e. Conversence of the Fourier expansion in the case of

orbitof the
perturbingbody
(not in scale)

Fig. 2.7. Fifth and sixth examp%e. Configuration.
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As described in section 1.6.4. Thenumerica_constants appearingin formula (1,157)

were chosenas follows: = 0.01, _ = _ . Thesameva_ue _ = 60°
E_ementsof the particle: _ = 0, (J = 1,2,3,4), _4 _'3 _ =

-- 2"

_ = O.
3 3

E_ements of the perturbing body: _4 = _ , &-_ = O, _--3= _ , _ = O,

3 -- 3 (Start on the positive x3 -axis).=o, p,
2.2.6.2 Fourler-series:

Program ANPER.

Input data: E0 = O, ESO = O, JKMAX = 13, TF = TFT = 1011, I = 0.

In Table 2._ the coslne-coefflclents av, (mu_tlp_led by TF) of the Fourier ex-

pansion

was adopted.

@_ = 0,

_4 = 0,

of the perturbation _ are tisted. A row corresponds to running values of v

fixed va_ue of n . This gives a picture of the convergence of such a series.

They are, computed by ANPER,

A_4 = 3.80195232"10 -6E , A_2

the remaining secutar perturbations A_j. A_

= -11.04974880-I0 -6 E ;

vanish.

and a

Table _.5. Ejection orbit. Coslne-coefficlents of _4 •

0 1 2 3 4 5 6 7' 8

-11 -1 0 0 0 0 0 0 0
-10 0 0 0 0 0 0 0 0
-9 15 -4 I 0 0 0 0 0
-8 o o o o o o o o

-7 -376 94 -25 5 0 0 0 0
-6 0 o 0 0 0 0 o 0

-5 8 974 -1 966 339 -12 -8 1 0 0
-4 0 0 0 0 0 0 0 0

-3 -200 422 27' 926 343 -7'24 0 -1 0 0
-2 0 0 0 0 0 0 0 0
-1 -263 426 61 044 -10 564 881 -7' 0 0 0
0 I_ 090 045 0 o 0 o o 0 0 o

1 -8 753 885 251 7'65 -62 904 11 77'4 -1 17'3 37' -1 0 0
2 0 0 0 0 0 0 0 0 0
3 -2 350 625 180 234 -34 856 2 042 613 -59 3 0 0
4 0 0 0 0 0 0 0 0 0

5 51 296 -7 006 2 186 -533 71 2 -2 0 0
6 0 o o 0 0 0 0 0 0

7 -1 322 252 -97 34 -9 2 0 0 0
8 0 0 0 0 0 0 0 0 0

9 37 -8 4 -2 1 0 0 0 0
10 0 0 0 0 0 0 0 0 0
11 -1 0 0 0 0 0 0 0 0
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Table 2.6. Circular orbit. Cosine-coefficients of _4 •

0 1 2 3 4 5 6 7 8

-11 0 0 0 0 0 0 0 0
-10 0 0 0 0 0 0 0 0

-9 o o o o o o o o
-8 o o o o o o o o

-7 6 -2 1 0 0 0 0 0
-6 7 -12 4 -5 1 -1 0 0
-5 -442 170 -65 11 -8 -3 0 0
-4 -700 1 253 -317 311 -60 5 -1 0
-3 30 025 -9 591 3 182 1 085 37 15 0 0
-2 71 948 -134 254 23 169 -1 182 245 -11 2 0
-1 5 530 19 958 -9 002 -3 241 -73 -29 -1 0

0 -3 040 890 -468 685 256 216 -44 593 1 729 -360 15 -3 0

2 386 433 -5 133 -19 228 8 782 3 181 71 28 1 00 61 978 -124 618 22 047 -1 138 238 -11 2 0
3 3 983 381 -23 993 8 576 -2 953 -1 026 -36 -14 0 0
4 0 -519 1 079 -287 289 -61 4 -1 0
5 -2 709 304 -141 58 -10 8 3 0 0
6 0 5 -10 3 -4 1 -1 0 0
7 23 4 2 -I 0 0 0 0 0
8 o o o o o o o o o

9 o o o o o o o o o
10 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0

Comparison with the rough method of section 1.6.4=

From (1,156)(1,157) one obtains

_4 = 3.34114-10 -6 E , A_ 2 = -10.93105-10 -6 E

2.2.7 Sixth numerica_ example. Conver6ence of the Fourier expansion in the case of

a circular orbit.

2.2.7.1 Configuration: (Fig. 2.7)

The unperturbed orbit of the particle is a circle in the _._: -ptane; the pertur-

I (as in the fifth exam-
bing body is as in the fifth example. _ = 0.01, _ =

p%e).
1 I I

Elements of the particle: m_ = _ , _, = _ , m, = 0, _ = 0, _4 = _ •

_, = - _ , @, = 0, _, = 0 (coinciding with the reduced elements (_])R •

(@_)R ; therefore E o = 0).

2.2.7.2 Fourier-series:

In Table 2.6 the coslne-coefflclents of Am4 (computed by ANPER) are listed in the

same arrangement as in the fifth example.

2.2.7.3 Conclusions:

As can be seen from the two Tables 2.5 and 2.6 the convergence of the series is not

sensitive to the eccentricity. We have also carried out numerical experiments with

the ratio a:_ = 1:9 in the more classical case where the orbit of the partic%e is

in the plane of the orbit of the perturbing body. A_so in this case the convergence

behaviour of the Fourler-series was practlca_ty the same for an ejection orbit as

for a circular orbit of the particle.



- 70 -

2.2.8 First-order perturbations of the orbit of the p_anetoid Vesta. The theory of

the genera_ perturbations of Vesta was established in 1880 by M.G. Leveau [10] ac-

cording to Hansen's method. His results on the first-order perturbations by Jupiter

have been compared with the results obtained by our program ANPER (cf. [5]}. Since

the set of e_ements used by Leveau is quite different from our regularized e_ements,

it was only possible to compare the distance of the p_anetoid from the p_ane of its

initia_ osculating Kepler orbit. The Fourier expansions of this distance as ob-

tained by ANPER agreed perfectly with Leveau's results.
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Appendix 2.__!I. Program NUMPER.

1: BEGIN
R|AL TO,H,M,XI,X2,XO,VI,V2,V3,0H,C$,C2,CO,MP ;
INTEGER N_NTAB,NDEG,,_FCT ; BOOLEAN NEARCENTRE ;
ARRAY ALO,BEO|I:4] ;
FORMAT INF 1= ''(2ZH START FA_ FROM CENTRE//

23H INIIlAL POSITION XL =,E18.10,4X,4HX2 =,E18.10,4X,4kX3 =,
E18,lO/23H INITIAL VELOCITY Vl =,E18.10,4X,4HV2 =,E18.10,4X,
4HV3 =,E18.lO//1BH SEMI-HAJgR AXIS =,E18.10,4X,14HECCENTR]CITY =,
E18.lO,4X,22NPERIO9 OF REVOLUTION =,E18.10)'' ;

FORMAT INFNEARCENTRE := ''(iSH START NEAR CENTRE//
23H INITIAL POSITION Xl =,G_B.iO,4X,4HX2 =,E18.10,4X,4hX3 =,
Ei8.10/3bH DIRECTION OF INITIAL VELOCITY Vl =,EI8.iO_4X,4hV2 =,
E18,10,4X,4HV3 =,E18.10//gH ENERGY =,E18.10//
18H SEHI'HAJOR AXI_ =,Et8.ZO,4X,14HECCENTRICITY =,E18.10,4Xp
22HPERIOD OF REVOLOTION =,E%B.IO) 1' ;

2: PROCEDURE REGEL(NEARCENTRE,M,XI,X2,X3,V1,V2,V3,0M,AL,BE,C1,C2,C3,
L) ;
VALUE H,Xl,X2,X3,VI,V2,V3 I
REkE H,Xl,X2,XO,V[,V2,V3,0H,C$,C@,C3 ; ARRAY AL,BE ;
BOOLEAN NEARCENTRE ; LABIL L l
BEGIN

REAL R,V ; INTEGER K ;
R ;= SQRT(XI*XI+X2*X2*X3tX3) ;
V := SQRT(V%*V_+V2eV2+V3eVO) ;
IF " NEARCENTRE THEN
BEGIN

OH := HIRI2-V.Vl4 ;
IF OHSO THEN QOTO L ;
OH := SGRT(O_) ;

END ;
|F H_O ^ Xl_O THEN
BEGIN

AL[1] := SGRT((R+X1)/2) ; ALTO} := X2*AL[1)/(R÷Xt) ;
kLlOI := XO*kLIll/(R*X$) ; ALt4| := 0 ;

END
ELBE IF R_O THEN

BEGIN
ALl2| := SQRT((R-X1)/2) ; AL[I) := X2*AL[2]/(R'Xl) ;
AL[4] := X3eAL(2_/CR-X_) ; kLl_i := O ;

END
ELSE

AL[Z| := AL[2] := AL[3] := AL[4] := 0 ;
IF RXO THEN
BEGIN

BEll] := ( AL[1]*VI*ALI2|,V2÷ALIOI*VO)/OM/2 ;
Bc(2] := ('AL[2]*VI+AL|t]'V2÷ALi4i*VO)/O_/2 ;
BE|3] := (-AL.[3]*VI-AL[4I,V2+ALI1]eV3)/DM/2 ;
8E[4] := ( AL[4I-Vt-AL[3]*V2+ALI2)IV3)/OM/2 ;
IF NEARCENTRE THEN
BEGIN

REAL VC ;
VC := 2tM/R-4*OM*O_ I
IF VC<O THEN OOTO L ;
V_ := SORT(VC) ;
FOR K:=I STEP 1 UNTIL 4 DO @EIK) := UE(KJ/V*VC ;

END ;
END

ELSE IF VI_O THEN
BEGIN

BE[l] :: SQRT((V*_I)*41V)IOMI2 ; BE[2I :: V2*Bblll/(V*Vl) ;
B_(_) := V3*OE(t]/(V*Vt) ; _E(4| := 0 ;

END
|LSE
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BEGIN

BE[2] := SORT((V-V1)*_IV)IOMI2 ; BEll] := V2*BEI2II(V°V1) !

BE{4] := V3eBE[2]/(V-Vt) 1 BEt3) =s 0 !

END ;
C1 := AL[t)*AL|ll$AL|2]*AL[2I*AL[3I*AL|3I÷AL[4I*AL|4] !

C2 := BEIII*BEiZI*BEt2]*_EI2|÷BEI3I*BEI3I+BEI4I*BE|4) l

C1 := (C1*C2)/2 ;

C2 := C1-C2 ;

C3 := AL|I|*BEI1]+ALI2I*EEI2]*ALI3I*BE|3I*AL(4I*BE|4] I

END REGEL ;

_EAD(N,NEAHCENTREPTO) ;

IF N=IO THEN OUTPUT(St,'t(26HIREGULARIZATION DT = R*DS////) 't)

ELBE OUTPUT(51,''(tSHtREGULARIZATION,2X,

20HDT = SgRT(AtAO)*R*DS////) 'l) ;

i_ NEARCENrRE THEN

IEGIN
READ(HI ;

IF H>O THEN QOTO ;_ERROR ;
OM ;= SORT(-H/2) !

END =
CUTPUT(51,''(SH TO =,EIS.IOIIII)t',TO) ;

READ(H,XI,X2,X3,Vl. V2,V3) ;

CUTPUT(51_'I(13H CENTRAL HASS//4H H m,E18._O////)I'pH) J
GEGEL(NEARCENTRE,H,XI.X2,X3,VI,V2.V3+OH.ALOwBEO,CI,C2,C3,IkbRROR) ;

CUTPUT(51,'f(lOH SATELLITE/) tl) !

IP NEARCENTRE THEN

CUTPUT(51PINFNEARCENTREPX1,X2,X3,VlPV2,V3oHwC1,SQRT(C2+2+C3_2)/C1,
3.1415926636*C1/OH)

ELSE

CUTPUT(St,INF,X1,X2,X3,V1,V2,V3,C1,SORT(C2_2+C3_2)/Ctº

3,141592653b*C1/OH) I

EEAD(MP.NTAB) ;

CUTPUT(51,'t(////16H PERTURBING HASS//4H H =PE18°lO/)'t.HP) i

|P NTAB_O THEN REAO(NDEG) ELIE ND_G :a 0 ;

KFCT :: 3 ;

BEGIN

REAL XP1,XP2,XP3,VP1,VP2,VP3.0HPwCPI.CP2,CP3,TBEG,D]TABwTFL.

DS,THAXpS,CS,SN.T,R.VP I

INTEQER I.NOUT,NOUT| 1

ARRAY ALP,BEP|t:4],TABII:NFCT,O:NTABI,LAHIO:NDEGI,DELII|N).

FCT(I:NFCT),ALpBE,U,DUDSIII4) !

PROCEDURE LAINTAB(T.PCT) I

VALUE T ; REAL T ; ARRAY FCT !

COHNENT GLOBAL: NDEG,NFCT.NTAB,TB_GpDTTAB,LAHIO:NDEGIe
TA_|_:NFCT,O:NTABI,OUT l

BEQIN

INTEGER N,L,I,J ; REAL P,K,SS I
ARRAY SIltNFCTI,_Y(O:NOEG] ;

P |= (T-TBEG)/DTTAB ! N := P ; K := NDEG/2 I

L := N-K+(K-ENTIER(K))tSIGN(P-N) !

IF L<O - L+NDEG>';TAB THiN GOTO OU; !

IF P:N THEN

fOR I:=_ STEP 1 UNTIL NFGT DO FCTII] := TABI|,NI
ELSE

EEalN

FOR |:=1 STEP 1 UNTIL NFCT DO Sill := 0 l
SS := 0 i

FOR J:=O STEP 1 UNTIL NUEG DO

EEQ|N

HY(J) :: LA.tIJ]I(P-L-J) ;

FOR 1:=1 STEP 1 UNTIL NFCT DO
Sill := SIII+NYIJI*TABII,L÷J) ;

$5 := SS*NYIJI I
END !

FOR 1:=1 STEP 1 UNTIL NFCT DO FCTIIi ;= _lll/SS I
END ;

END LAINTAB I
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PROCEDURE RKlST(X,Y,N,H,F) ;

VALUE N,H ; REAL X,H ; INTEGER N ;

ARRAY Y ; PROCEDURE F ;

BEGIN

REAL XI ; INTEOER K,J ; ARRAY Y1,Y2,ZII:H]wA[IlS] I

A[1) := A[2) := A(5] := H/2 ; A[3) := k{4) S= H I

XI := X ;

POR K:=I STEP 1 UNTIL W DO YIIK) := Y2IK) := YIKI

POR J:=l STEP 1 UNTIL 4 DO

BEGIN

F(XI,Y2,N,Z) ;

XI := X+A[J] ;

FOR K:=I STEP 1 UNTIL N DO

BEGIN

Y2IK] :: YtK]*AIJI*ZIK] ;

Y_[K] := YI[K]+AIJ*I]wZ[K)/3 ;
END ;

END ;

X := X÷H ;

FOR K::I STEP 1 UNTIL N DO Y[K] := YI[K) ;

END RK1ST ;

PROCEDURE F(S,DEL,N,G) ;
VALUE S,N ; REAL $ ; INTEGER N ; ARRAY DEL,G ;

CONNENT GLOBAL: TO.3H,CI,C2,C3,NTAB,CPI,CP2,CP3,ALP,BEF,

ALO,BEO,LAINTAB ;

BEGIN

REAL CS,SN,T,XP1,XP2,XP3,RoXI,X2_X3,DEN1,DEk2,P1,P2,P3e

SUM ; INTEGER I ; ARRAY AL,BE,U,DUDS,_[I:4| ;

T := TO*CI*S+C2*SIN(2eOH*S)/OH/2+C3*(I'COS(2*OH*S))/CH/2

*DEL[9] ;

IF NTAB=O THEN

BEGIN

REAL SP,SP1 ; ARRAY UP[I:4] ;

SP1 ;= (T'TO)/CPt'CP3/CPI/OHP/2 ;

LOOP: SP := SPI-(CPl*SPI*CP2eS|N(2*OHP*SP1)/OMP/2*GP3*

(1QCOS(2*OHP*SPt))/OHP/2-I*TO)/(CPI÷CP2*COS(2*CHP*SP1)

+CP3*SIN(2*OHPtSP_)) ;

IF ABS(SP-SP1)>.-9/OHP/2 THEN

BEGIN SP1 := SP ; IOTO LOOP END ;
CS := COS(OHP*SP) ; SN := SIN(OHPeSP) ;

FOR I:=1 STEP 1 UNTIL 4 DO

UP[I] :: ALP|I]*C$+BEP[IJ*SN ;
XPI := UP[1]*UP[1]-UP|2]*UP[2]-UP[3]tUP[3]_UP[4)*LP[4) ;

XP2 := 2*(UP[1]*UP[2I-UP[3]*UP|4|) ;

XP3 := 2*(UPIII*UPI3)÷UPI2]*UP[4)) ;

END

ELSE

BEGIN
LAINTAB(T,FCT) ;

XP1 := FGT[1} ; XP2 I: FGT[2) ; XP3 := FCT[3] ;

END ;
C5 :: COS(OH*S) ; SN ;: SIN(OH*b) ;

FOR 1::1 STEP 1 UNTIL 4 DO

BEGIN

AL[I] :: ALO|I]_OEL|I] ; BE[|] 1= BEOII}*_ELiI_4] ;

U[I] :: AL[I]*CS+BE[I]*SN ;

UUUS[]) :: OH*(-AL[II*SN_BE[J]wGS) ;

END ;
R :: U[II*UI1]*U[2)*U[2I*U[_]*Ui3]+U[4I*U|4] ;

Xl 1: U[ll*U[1]'U[2]*UI2]-Ui3J*UI3I_U[4)*U[4] ;

X2 1= 2*(U[1]*UI2]-UI3]*U[4)) ;

X3 := 2*(UI1]*UI3]*U[2I*U[4)) ;

DENt := ((Xt-XPt)*(Xt'XPt)÷(X2-XP2)*(X2 "XP2)+(X3-xP3)
*(X3-XP3))_l.5 ;

DEN_ :: (XPt*XPt+XP2*XP2+XP3*XP_)_I.5 ;
PZ :: -HP*((Xt-XP1)/OENt*XP1/bEN2) ;

P2 :: -HP*((X2-XP2)/DENI÷XP2/DEN2) ;

P3 :: -HP*((X3-XP3)/DENt_XP3/_EN2) ;
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10:

11:

12:

Q[I) := 2*( IJ[1]*Pl+Ut2I*P2+Ut3I*P3) ;
0[2l := 2*(-U[2]*PI*U[t]*P2÷Ui4]*P3) ;
O[3) :: 2*(-_[3]*P1-U[4]*P2*U[Z)*P3) ;
0[44 :: 2*( J[4!*P1-U[3]*P2*U[2|*P3) ;
8UH ;= QI1]*DUDS[ti*Q(2|*_UDS[2I+Q[3]*DUDS[3]*G[4]*DLDS|4I !
IF N=IO THEN
BEGIN

REAL DAL2,DBE2,DALBE,DR ;
FOR I:=1 STEP 1 UNTIL 4 DO
gEG|N

G[[] 1= (R*QII]*2*DEL[IO]*U[|I)/OH/4 !
G[]+4] := G[I]*C$ ;
G[[] := -O[[]*S_ I

END ;
UAL2 :: (2*ALO[1}*OEL(1])*bEL[1]+(2*ALO|2)+UEL(Z})fUEL|2]

+(2.ALO[3]+DEL[$]).DEL[3]+(2*ALO[4]*DEL[4])*UEL[4] ;
DBE2 := (2.BEO[1].OEL(P])*_EL[5]+(2*BEO[2]+UEL[b])tDEL[6)

• (2.BEO[3]*DEL[7])*DEL[7]÷(2tBEO[4]÷OEL[8])*UEL[8| ;
DALBE := ALO[1]*DEL[_]+BEO[1)*DEL(lJ+DEL[I|*DEL[5]

+ALOI2]*DEL[6]*BEO{2]*DELI2I*DEL[2]*DEL[6)
+ALO[3]*DEL[7]+BEO[3ItDELt3|*DEL[3]*DEL|/]
• ALO[4]*DEL[8|+BEO[4]eDEL[4)_DEL[4]*DEL[U] !

DR |= (DAL2+DBE2)I2$(DAL2"UBE2)I2*COS(2*OV*S)
÷DALBE*SIN(2*OHwS) I

G[9) := DR !
G[IO] := SUM ;

END
ELSE

9EG]N
REAL A ;
A := (AL[lJ*AL[II+ALI2]*AL{2|+AL[3ItALK3)+AL[4I=AL| 4]

+BE[1]*BE[1]+SE[2I*BEt2|+BE[3]*BE[3]+BE[4]*BE[4])/2 I
FOR ]:=1 STEP 1 UNT|_ 4 DO
EEGgN

G[|] := AICt*(R*Q|II+UUUS[I|*SUM/OH/OH)/O H/4 !
GI[+4) :: GitIwCS ;
G[I] :: -G[II*$N ;

END ;
G[91 |: SQRT(A/C1)tR-(CI*C2*GOS(2*OM*S)*C_*5|N(_tCH*S)) !

END ;
.END F ;

IF NTAB:O THEN
lEE]H

READ(XPI,XP2,XP3,VPI,VP2wVP3) !
REGEL( FALSE ,H+HP,XPt,XP2,XP3wVP1,VP2,VP3wOMP_ALP,BEPw

CP1,CP2,CP3PINERROR) I
OUTPUT(Pl,iNF,XP1,XP2,XP3pVP1,VP2PVP3_CPI,SORT(CP_2+CF3_2)/

CP_w3.1415926536*CPt/OMP) ;
END

ELSE
OEEIN

READ(rBEG,DTTAB,TFL) !
FOR 11=0 STEP 1 UNTZL NTAB DO
READ(TABLlwI],TABI2,|]pTAB[3,|]) ;
OUTPUr(51,tI(7H NDEG =,I3/ItOX,1HT,17X,2HX1,Z8X,2HX2,18X_

2HX_/)'',NDEG) I
FOR 1;=0 STEP 1 UNTIL NTAB DO
BEGIN

TA8[1,I! :m TFL*TAB[1,|] ;
TAB[2,[) :x TFLeTAB[2p[] ;
TAB[3,]) := TFL*TAB[3,]) !
OUTPUT(51.tt(IX.E18.B.3E20.IO)'I,TBEG+]eDTTABw

TABIleII,TAB[2,II,TAB[3,|]) !
END ;
LAH[Oi :: 1 ;

_OR [:=0 STEP 1 UNT|L N_EG-1 DO
LAHI[+I] |= -LAr4III*(NOE3-t)/([+I) ;

IND ;
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13:

14:

15=

ENDCFPR: END

READ(DO,NOUI, TMAX) ;

OUTPUT(St,''(////22H INTEGRATION STEP DS =,E18.10/7N NOI;I =,|4/

IH1, iOX, IHT, 16X,8HXI, X2, X3,11X, 8HV1, V2, V3,14X, 5_ALPHA, 15X,

4HBETA/)'_,DS,N3UT) ;

S := 0 ;

FOR I:=% STEP 1 UNTIL N DO DEL{I) := 0 ;

TR3:
T := TO+CI*S+C2*SIN(2*OH*S)/OH/2÷G3*(1-COS(2 *OM*S))/UM/2÷DEL|91 ;

CS := COS(OH*S) ; SN := SIN{OH*S) ;

FOR I :=1 STEP 1 UNTIL 4 DO

BEGIN
ALl|) := ALO[II',DEL[I] ; BE[I| := BEOIII+DELLI÷4I ;

U[I] := ALII)*CS+BEII]*SN I

DUDSiI] := OM*('ALIII*SN*BE[I]*CS) ;

END ;
R :: U[IJ*U[1]÷U[21*U[2)+O[3]*U|3|÷U[ 4]*Li[4] ;

Xi ;'= U[1}*UiZ)-U[2i*U[2]-U[3I*U[3|÷Ui4i*U(4| ;

X2 ;: 2*(U{1]*U[2]-U{3]*U|4)) ;

X3 := 2*(U[1)*U[3|+U[2]*U[4]) ;

VF :: IF R:O THEN 1 ELSE IF N=IO THEN 2/R ELSE
2/R/SORT ( (AL(1 ]*ALl 1] +AL[2],AL[2] +AL [3]*AL [3] ÷AL |4 ]*AL.|4 |

+BE(II*BEIZI+BE[2)*BE[2]*BE[3]tBE[3I*BE[4I*BE[4])/2/C1) I

Vl ;= VF,(U[Z]*DUDS[1)-d[2]*DUDS[2}-U[3|*DUDS{3I÷U[4I*DL, DS[4)) ;

V2 :: VI'*(U[1)*DUDS[2]+J[2]*DUDS[1 ]-U|3I*DUDS|4]'U[4I*DLL}$[3|) ;

V3 ;= VF*(U[1]*DUD3[3]+d[2]*DLJDS[4]+Ui3|*DUDS[lJ+U[4]*DUDS[2]) ;

IF N=9 THEN
OUTPUT(51, ' ' (/5E20 .lO/20X,4E20 .lO/20X,4E20.lO/60X,2E20.10) ' ',

T,X1, Vl,AL|I] ,BEll| .X2,V2,&L[2), BE|2] ,X3,V3, AL|3| ,BE[_| .

AL|4) ,BE|4| )

ELSE
OUTPUT (51, ' ' (/6E20.10t20X, 5G20.10120X, 4E20.lO/60X,2E20.10) ' ',

T, Xl, Vl, ALl1| ,BE[l] ,R*DEL.[ 10 | , X2, V2, AL[ 2] ,BE [2) , 2*OM*OP*

((2*ALO[II+DEL|:tI)*DEL[1]÷(2*ALO[2I÷DEL[2))*DEL[2|÷(2*ALO[3]

*DEL|3 } )*DEL[3 ) * (2*ALO [ 4]÷gEL| 4 ] )*I.)EL ( 4 ] + (2*BEO [ 1 )+DEL|5 ] )*

DEL[5]+(2*BEO [2|+DEE[6] )*DEL[6|+(2*BEO (3J +DELIT] )*DELl7 |÷(2"

BEO[4)'_DEL[8))*OEL[81),X3,V3,ALI3)wBE|3),AL[4),BE[4]) ;

IF R:O THEN

OUTPUT(51, ' ' (
57H (COLLISION, Vl,V2,V3 IS "[HE I.)IRECTION OF THI= VELOCITY))

'') ;

NOUTI : = O ;

INT:

RK1ST ( B, _EL, N,i.)S, F ) ;

NOUTI := NOUTI ÷1 ;

IF T<TMAX THEN

BEGIN
IF NOUT [ =NOUT THEN OOTO TR3 ELEE GOTO IN] ;

END
ELSE GOTO ENDOFPR ;

END ;
INERROR: OU[PUT(52.,''(20H ERRO_ IN INPUT DATA)'') ; GO'IO

CUTi OUTPUT(bl,''(23H TABLE NOT LARGE ENOUGN)'') ;

EkEOkPR ;
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Appendix 2.2. Output of program NUMPER. First examp%e.

REGULA_IZATIOh DT = RiDS

TO • 0

CEhTRAL HASS

M = 2.9656218330E 15

SATELLITE

START hFAR CEhTRE

INITIAL POSITION X1 = X,OUOOONOO�OE n4 X_ • 0 X3 •

CIRECT[CN OF INITIAL VELOC|TY V_ = 0 V2 •

ENERGY • -t,O00000OO00E $0

SBNI-HAJOR AXI_ • 1.48_8109165E 05 ECCENTRICITY : 9.3256051803E'01

0

0 V3 • 1.0000000000E O0

PERIOD OF REVOLUT|OR • 6,9879953214E O0

PERTURBING NASS

M = 3.6374_00520£ 13

EDEG • 6

T X1 X2 X3

-3.00000000E O0 1,9809297145E O_ 2.8S49105&I7E OS 1.14730668296 05

-2._nNOO_OOF O0 1.5674343R71_ _R 3,0qp1744_45E 05 1.2652534907E 05

o2.OQO0_O00_ Off i.12981_1n15_ 05 3.tT_I274704E 05 1.3640116991E 05

-I._O000_OOE O0 6.7444433387_ 04 3.245fl251_036 05 1.4416832961[ 05

"[,nO00OO00B O0 2,08285552t7_ 04 3._659449_88E 05 1.4966976950E 05

-_.nOOOO_OOE-Ot -2.613026669_ 04 3.P34Rg21755E 05 1.527S764309E 05

O -7.2672082464E _4 3.lSIR757452E 05 1.5344842921E 05

5.00000nOOE-01 -1.1803349729E O_ 3.0t7Q443599E 05 1,5162675269E 05

1,_0000000E O0 -l,6146903501E 05 2.8551799938E 05 1,4734699_38E 05

1._oo00no0_ O0 -2.0227182665_ O_ _.6_6_435_34E 05 1.4068284392E OS

2.P0000000_ O0 -2.39792726t9_ 05 2.31_PBO2952E 05 1.31754B4477E 05

2.50000000E O0 -2.7345631254E 05 2.q_879423606 05 1.2072590848E 05

3._O0_OOE O0 -3.0277291166_ OR t.6_94927374E 05 1.07795451396 05

3._O0000OOE O0 -3.2734641613_ O_ 1.3_4_258714E 05 9.31g_SBB785E 04

4._0000000_ O0 -3.4687808020_ O_ 9.3_7_146_07E 04 7,7168843714E 04

4._O_O0000E O0 -3.6116616q65_ 05 5.3943171774E 04 5.99go90067_E 04

5.0000OO00E O0 -3.7010285430_ 05 i,3_3_442LI18E 04 4.1934034149E 04

5._OOQOOOOE O0 -3.736_8808_7_ 06 -2.763_494_25E 04 2.3275868301E 04

6.[10000000E O0 -3.71926n5906_! 05 -6.stlsOSt74_E 04 4.2913082915E 03

6,500000_0E O0 -3,6500969947_ 05 -_,0763706827E 05 -1.4751815204E 04

7.00000000E O0 -3,_3120?84_9F R5 -_.4560969756E 05 -3.359617_797E 04

7.50noooooE oo -3.3651536801_ 05 -1._lq3034951E 05 -_.1997675864E 04

8._000000E O0 -3.i550162_14E 05 -2.t56nt47511E 05 -6.9727428678E 04

8.fiOOoooooE O0 -2.90425tt491E 05 -2.4663056227E 05 -8.6573450416E 04

9.00000000F O0 -2.6i67888178_ 05 -2.745_065249E 05 -1.0234153980E 05

9._00000E O0 °2._966760460_ 05 -2.99_130185E 05 -1.1685628018E 05

1.00000_OOF 01 -_,9483167_4_ Oq -3,2_1P832HltE 05 -1,29_6154260E 05

1,_ROOOOOOE 01 -1,5762703606_ 05 -S.37_R356403E 05 -1,4_52083600E 05

1.10000000_ 01 -i.185237_167E O_ -3._q4746754_E 05 -1,514176956_E 05

1.15000000_ 01 -7.8001123993_ 04 -3.5959425_72E 05 -1,_95556894_E 05

1._O00000O_ 01 -3.654394574_= 04 -S.6457952fi72E 05 -I.6585867290E O_

1.25000000[ 01 5.36197513t4E 03 -3,6541120406E 05 -1,7027071226E 05

l. SnooooooE Ol 4.7233529675E 04 -3.6_11233575E 05 -1.7275586842E 05

INTEGRATION STEP DS • 9.999999999qP-07

hOLT • 1

T

0

1,0460476110F-O_

2,3e7277_4_2[-02

Xl,X?*X3 VI,V2,V3 ALPHA BETA

_.O000000000E 04 0 $.O000000000E 02 0 0

0 0 0 0 0

0 7.570497/812E 05 0 5.3531503183E 02
0 0

H.51965B4t67F 03 -P.�q7201_213E 05 1.00000002_26 02 .6.49865_04_5E-05 -1.7408365416E 08

-1.1284_9_67_P-_4 ._._9_780_659E-03 -7.75653_7193E °OB .6.77771_2532F-06 -1,740_362_4E OS

7,5452877411_ 03 _,_857504854E 05 6.14789RSS76E'07 5.35315_1509F 02

6.36015426196"08 .4.1521899746E-07

4.i08_q_Ot7qF 03 -].77724_1557E O_ 1.0000001471E 02 .1,763_229444E-04 -4.3347483410E OO

2,837670_3t_P-_4 _.652BOSR437E-02 -7.6575866379E-06 5.8874266518_°0_ *4,3347309flOE 08

1.4939919542_ 04 4.6917968983E 05 3.55231314446"06 _.353_498858E 02
4.8872925222E-06 -4,0992213733E-05



T

4.2_33763423E-02

6,9031528642E-02

1,0_19367229F-01

1,5603803600E-01

2.205323_967E-01

3,0134699368E-01

3,9_829t3039E-01

9,1697206880E-01

6,9339544048E-01

8,0933258454E-Ot

9.Ea62927602E-01

1,1_87262304E O0

$,3907094644E O0

1,6192881669E O0

1,8628400244E O0

2.6627987806E O0

2,9_45659929E O0

3,2E9498N449E OO

3.9_48355439E O0

XS.X2.X3 Vl*VS,V3

-3.1463198764E 03 -$.8780140977E 05

4.366971_308_'n3 3.79_0944392E-01

2.2036246490_ 04 ].q9949_0439_ 05

-1.3099023900E 04 -3.9639489788E 05

_.285282_876¢-fl_ t.3_N725_O90E O0

2.S6929728t_q = _4 _._2_2063885E 05

-2.9951_BR293_ _4 -3.tS_649O_22E _9

8.5246Rlq986G-O_ _._Tq7313124E O0

3.4779982740F 04 t._3369637eOE.09

-4,02_4140891_ 04 -2.7668964230E OS

2.�96028_907F-fll 4.7_?56397231 09

4.016499997_ 04 q.9909995949| 04

-9.6914240676G 94 -2.4_23127869E 09

6.820070597tF-91 _.91n3903996E O0

4.475199991_ 04 5.737419_254E 04

-7.9198597444F 94 -2.tSt4604949E 09

$.974747R997; O0 t.363t388166G O_
4,0449240896_ 04 _,9999801979E 04

-9,4741705097_ 04 -t.66t4744640E 09

3,2639977074_ 90 _._879882924E 01

5.1171938486_ 04 2.063791636tE 04

-l.19t9261907E 95 -t,63439tb6t4E 09

6.2945416490F 99 ].t19063z174E 01

5.2874824586E 94 9,309994_430E 03

-t.360226479_E 99 .t.4339438384E 09

1.1904053972P _1 4.5_99_34967E 01
5.352299382_ _4 7,77396$4666E O_

-t.969334199tE 09 .t.?54929R376E 09

2.0089443593_ O_ 6.4_71549711E 01

9.3_0135768_ 94 -_,76_95_669E 03

-_.774690q934_ O_ -t.qq3t44_SH3E 05

3.3183733770F Ot _.60_9629731E 01

5.t619735748_ 94 -_,_840814813E 04

.1.9720478604_ 05 .9.45220930626 04

9.2737316217P O_ _.16_4709977E 02

4,9107740_27E 04 -t.4820120702E 04

-2.1579400909_ O_ -_.0843B82491E 04

8,1097468279P 01 t.9_528_B40E O?

4.961633629_P 04 -_.79_332_99_E 04

-2.3274071063_ 09 -6.9058246930E 04

1.20890914t4_ O_ t.�qR2956943E O_

4.12_648197_ 04 -_.041954_269E 04

-2,478190_39_F 09 .5.5o82760309E 04

1.768649436dP 02 _.61_1973361E 02

3,5996564953F O_ .2._3_2740797E 94

-2.606643351_ _ 95 .4.44_39594t4E 04

2.9322334879F O_ 3.37443886016 02

3.006970tO,OF 04 ._._796393374E 04

-2.710799728_a 09 .3.3371126760E 04

3.592047649q_ 92 4._648019430E 02

2.3552541774F _4 ._.4970947480E 04

.2.787R37t�95_ O_ ._.25929784726 04

4.8868399tStP O_ 9,4722997306E 02

_,65_2927960_ 04 -2,5_909939%6_ 04

-2.836530594tP 06 -t. Sn?6159331E 04

6.6207q�_396P _2 6._E_466_490[ 02

9.3084243888_ _3 -2.5991029140E 04

.2.8_58917160F 09 .1.9902_80799E 03

6.823008197_ O_ _.6730544632E 02

_,984_89_99_E 03 -2.60h60949_3E 04

._,8456061709E 09 _.909D746934E 03

1.197354R19tF 03 t,q623027307E 03

.9.928271_Ofl_P 03 ._.9837224282E 04

?? -

ALPHA BETA

1.0000004747E 02 -3,9692443069E-04 -1.1440_75034E 09

-4.629tO24899E-05 2.6812252992_-94 -1.1440464525E 09

t.7036176982E'09 9.3531491610E 02

4.34798291aOE-09 -2.4758871832E-04

1.000001176_E 02 -6.3174781_40E-04 -3.TtO6870800E 09

-1,6853169315E-04 7,4339946018E-04 -3.71063683_7E 09

8.2878963439E-09 9.393_466327E 02

2.1_09627434E-04 -9.0217976732E-04

_.00009249_4_ 02 -_,01689_9375E-03 -_.l_24829070E 10

-4,7057041134E-04 1.6499150644E-03 -1.1924677331E 10

3.4_97996243E-04 5.3531387220_ 02

7.9449S327_6E-04 -2.9590359429S-03

1.0000044338E 02 -Z.49895t73_SE-03 -3.3616394644E 10

-t.tOO9436a_OE-93 3.t741359177E-03 -3.3616021t96E 10

1.2071982099E-03 9.3931180910E 02

2.1529807703E-03 -9.0913847980E-03

t. OOOOO69721E 02 -2.0119120309E°03 -8.StSB239635E 10

-2.2_69397079E-03 9.4962297907E-03 *0.2197604699E 10

3.500622t_59E-03 9.3530722754E _2

9.2433819838E-03 -1.2081794062E-02

1.000010_714E 02 -2.9735911701E'03 -t.Bl12218999E It

-3.9870772898E-03 8.4376227981E-03 -1.Et12101470E It

9.0077266332E-03 5.3_29792174E 02

1.0703913309E-0_ -2.1343598134_-02

1.0000129460 E 02 -2.9681271866E'03 -3._406636634E tt

-6.6103997926E-03 1.2249665309E°0_ "3.5406467326E 1_

2.0196145814E'02 9,3928_7_6_ 02

2.0398699841E'02 -3.9386082090E-02

1.0000106760E 02 -2.695_9_$963E-93 -6.27352986_$E 1_

-1.0505089451E-02 1.7129860661Eo02 -6.2739062676E tt

4.0577924500E-92 9.3_2962_661_ 02
3.7093640674E-02 -5.623649f1693f-_2

9.9999478247E 01 -9.8658694901E-04 -1.0272798299E 12

-_.60_96_6_32E°92 2.35691q4993E*02 -t,O272769997E 12

7.4760431327E-02 9.3521915329E 02

6.4467256375E-02 -0.5972919220E-02

9.9999587356E 01 2.6810181920E-03 -1._770217930E 12

-2.3304175793E-02 3.0019046490Eo02 -1.5770183699E 12

t,285454_691E-ot 9.3516849616E 02

1.0955167713E-01 -t,2479786984E-Ot

9.9988803337E 01 0.1876080304E-03 -2.29239303_9E 12

-3.1712740842E-02 3.689_141876_-02 -2.29237923_4E 12

2.08_5369680E°01 9.3510287224F 02
t.6070235274E-01 -1.6977073084E-01

9.9973443209E 01 1.89764tO976E-02 -3,17105107_8E 12

-4.2998893015_-02 4.4834973182_-02 -3.1710470324E 1_

3.212676_591E-01 9.3902352129E 02

2.461t983971E-01 -2.2999899748E-01

9.9990228864E O_ 3.2997994_09E-02 -4.1919_3499E _2

-5.5179449809E-02 9.2249897837E-02 -4.1919670917E 12

4.7207897777E-01 9.3493227222F 02

3.942_2494_E-Ot -2.99444_3755_-91

9.9907049141E 01 9._003431684E-02 -5,33297960_0E 12

_7,9407667946E-02 6.909443_769E-02 -5.3329744979E 12

6.6_24830656E-01 9.3483329t65E 02

9.1391699173E°01 -3,7703096748E-01

9.9839071903E 01 8.9644337684E-02 -6.5474206777E 12

.d.82700566509.02 6.7697360074F-02 06.5474164843E 12

9.9t5928OOt4E-Ot 9.3473249959_ 02

7.3826983721E-01 -4,7277072849_-01

9,9728694705E Ot 1.2211562523_-01 -7.7700664540E 12

-1.0678_3413E-01 7.40916_8292_.02 -7.7780626406E 12

1.1804139994E O0 9.3463609780E 02

1,0271049249E O0 -9, 7208698839_°01

9o9579603274E 01 1.6193110389_'01 -8.9593_53383E 12

-1.2464_15260E'01 7.8909255597E-02 -9.9593304705E 12

1.4949_91039E O0 5.3459168947E 02

1.385343153_E O0 .6.6903755019E-01

9.9341892353E 01 2.0749179831E-01 -1.0986543$_4E _3

-1.4247033049E-01 8.2378305916E°02 -1.0086938723E t3

1.92373_6995E O0 9,3448774786E 02

1.88499015_8E OO .7,6_ZO733820E-91

9.9023740706E 01 2.49690_3448E-01 -1o_1062027_9E 13

-t.�E7317_2?oE-01 6.49335_095SE-92 -1,ttQ61934_7E t3
2.t520847267E O0 9.34447649919 02

2.4808447080E O0 -0.3618119429E-01

9.9_37255144E 01 2.6912259939E-01 o1._157018249E 13

-1.6257799906E-01 0.4431060711_-02 -t.St570094_9G 13

2.4_318_9795E 09 5.3443381407E 02

3.270348_706E DO .Å.7490351314E-01

9.7925695726E 9t 2.5982464727E.01 -1.3_6_080868E 13

.1.5895979823E.01 8.4987_231329-02 -1.3261860059E 13

2.99t3714838E O0 5.3443671658_ 02

4._458067292E O0 -8,5679448189E-01

ete.
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Appendix 2.3. Program ANPER.

BEGIN

PROCEDURE PF(H,Hs,E,E1,ALO,BEO,AO,EXZO,ALS,BES,k$,EXZS,F) ;
VALUE H,HS,EwEt,AO,EXZO,AS,EXZS ;
REAL M,MS,E,EZ,AO,EXZO,AS,EXZS !
ARRAY ALO,BEO,ALS,BES,F ;
BEGIN

REAL ES,_SA,XS,YS,ZS,R,X,Y,Z,DVDX,DVUY,DVDZ,SUH,H,H_OS,H$IN !
INTEQER L ;
ARRAY U,US,DUDE,DVDU|I:4] ;
H := E1-EXZUeSQRT((M+MS)/M)*(AO/AS)ti,SeSIN(E) ;
ESA := H ;
LOOP: E5 := ESA-(E_A'EXZS*SIN(ESA)'H)/(1 °EXZS*COS(ESA)) ;

IF AHS(bS-ESA) > .-9 THEN
BEGIN ESA := ES ; QOTO LOOP END =

MCOS == COS(ES/2) = HSI_4 := SIN(ES/2) =
FOR L:=I STEP 1 UNTIL 4 DO
US(L] := ALS{LI*HCOS*BES{L|*HSIN ;
XS ;= US[1]*US[II-US[2]-US(2I-US[3I*US[3)+US[4I*US[4] ;
YS := 2*(US[IIIUS[2]'US[3iiJS{4]) ;
ZS := 2*(US[IIeUS|3]+US[2]*JS|4]) ;
HCOS := C05(E/2) ; HSIN := SIN(E/2) !
FOR L::I STEP 1 UNTIL 4 00
IEIIN

U[L] := ALO|L]IHCOS÷aEO[LIIHSIN ;
DUDE[L] := -ALO[L]/2*HSI_+BEO[E]/2*HCOS ;

END ;
R := U{II*U[II*U(2I*U{21+U(3I*U[3J+U(4}*_(4] ;
X := U[IIeUtiI-U[2]*U{2]-U[3]eU|3I÷U[4]*U[4] ;
Y := 2*(UilJ*Ui2)-J[3]*J14]) I
Z := 2*(U|lI*U[3]_U[2]*O[4]) !
H : = ((X'XS)*(X-XS)+(Y-YS)*(Y'YS)_(Z-ZS)*(Z'ZS))tl.5 ;
DVDX := (X-XS)/H ; DVDY := (Y-YS)tH ; DVDZ := (Z-ZS)/H !
H := (XSeXS+YS*YS+ZS*ZS)?I,5 I
DVDX := -MS*(DVDX_XS/H) ;
DVDY ;= -MS,(DVDY*YS/H) ;
DVDZ := -MS*(DVDZ+ZS/H) ;
DVDU[I] := _*(U(tI*DVDX*U[2I*DVDY*U[3IeDVDZ) ;
OVDU[2] := 2*('U[2I*DVDX+UI1]*DVDY+U(4I*DVDZ) ;
OVDU[3] := 2*('UI3}*DVDX-U[4]*DVDY+UIi]*DVDZ) ;
DVDU[4] := 2*(U[41*DVDX-U[3]eDVDY+U[2)eDVDZ) ;
SUM := bVDUItI*DUDE[i]*DVDU[2I*DUUE[2I+DVDU[3I*DUDE|31

*DVDU[4J*DUUE|4} ;
FOR L::l STEP 1 UNTIL 4 00
BEGIN

F[L] :: AO/M/2*(R*DVDU[LI*4*DUDE[L|*SUM) ;
F[L*4I := FtL]*_COS ;
F[L] := -F(L]eH_IN ;

|ND ;
END PF I

PROCEDURE PDfOBDhLAN(M,_LO,BEO,AO,EXZO,I,DF9DDELAN.JKMkX) ;
VALUE M,AO,EXZO,I,JK'4AX ;
REAL M,AO,EXZU ; INTEBER I,JK_AX ;
ARRAY ALD,BEO,DF9DDELAN ;
BEGIN

REAL H_,AUSO ;
INTEGER J,K ;
MSO := SORT(M) ; AOSO :: SQRT(AO) ;
FOR d:=O STEP 1 UNTIL JK_AX-1 DO
FOR K::-(JKMAX-t) STEP i UNT|L J_MAX-1 DO
BEEIN _JELAN[J,K,1) := 0 I DF_D_ELAN|J,Ko2I := 0 END ;
OF9DDELAN[O,Ool] := AOS]/_S']*( IF 1_4 THEN ALO[II ELSE

aEOI[-41)*AOSO/_SO/2,( Ir IS4 THEN ALOII] ELSE E_O[|-41) 1
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DF9DDELAN[1,0,1] == (AOSQ/H$_*( IF |$4 THEN ALOfI! :Eb|E
-BEO[I-4i)-EXZO*AOSQ/MSQ/2t( IF I$4 THEN ALOII) :BG|E

BEO[1-4]))/2 !

DF9DDELAN|I,0,2] := -(AOSQ/HSQ*( IF |24 THEN BEO[I] ELS§

ALOE[-4|))/2 ;

§ND PDF9DDELAN ;

PROCEDURE DFUURAN(JKMkX,F,A) ;
VALUE JKHAX ; INTEGER JKMAX ; ARRAY F,A ;

BEGIN
PROCEDURE SFOURAN(JMAX,F,A) I

VALUE JMAX ; INTEGER dMkX ; ARRAY R,A ;

BEGIN

INIEGER J,N,JNMOD2JMAX ;

ARRAY COSARRAY,SINARRAY[O;2*JMAX-1) ;

_OR J::O STEP 1 UNTIL JMAX-1 DO

BEGIN
COSARRAY[J] _: COS(3,141_926_36/JMAX*J) ;

SINARRAY{J] I= SIN(3,t41_926_361JMAX*J) ;

COSARRAY[J+JMAX| 1= -COSARRAY[J] ;

SINARRAY[J+JMAX| := -SINARRAYiJ] ;

END ;
A[O,1] := 0 ;

FOR N:=O STEP % UNTIL 2*JMAX-1 DO

A[0,1] := A[O,1]+F[N] |

ALOe2| := 0 ;

FOR J:=l STEP _ UNT|L JMAX-I .DO

BEGIN
k[J,l| := 0 ; A[J,2] := 0 ;

FOR N:=O STEP-1 UNTIL 2*JMAX-1 DO

BEGIN
JNMOD2JMAX := J*N-ENT]ER(J*NI(2*JMAX))*2*JMAX ;

A[J,t] := A[J,1].RIN]*COSARRAY[JNMO_2JPAX) ;

k[J,2] :: A[J,2]-F[N]*SiNARRAY[JNMOD2JMAX| !

END ;

END ;

FOR J:=O STEP L UNTIL _MAX-1 DO

BEGIN

A(J,1] := A[J,L]/2/JMAX !

AtJ,2) := A[J,2]/2/JMAX !

END ;

END SFOURAN ;
INTEGER J,K ; ARRAY AI[O:JKMAX-I,1;2I,FI[O:2*JK_AX) ;

FOR K:=O STEP 1 UNTIL 2*JKMAX DO

BEGIN
FOR J;=O STEP 1 UNTIL 2*JKMAX DO FIiJ] 1: P[J,K] ;

SFOURAN(JKMAX,FI.A]) ;

FOR J==O STEP % UNTIL JKMAX-1 DO

BEGIN
FIJ,K] ;: AT[J,11 ;

F[J_JKMAX,K] :: AI[J.2] ;

END ;

END ;

FOR J::O STEP 1 UNTIL JK_AX-$ DO

BEGIN
FOR K::O STEP % UNTIL 2*JKMAX DO FI[K] ;: FiJ,K) ;

SFOURAN(JKMAX,FI,AI) ;
FOR K:=O STEP 1 UNTIL JKMAX-1 DO

BEGIN

F[J,Ki := A|(K,1] ;
F[J,K+JKMAX] := AIIK,2] I

END ;
FOR K::O STEP 1 UNTIL 2tJRMAX DO FI[K] :: F[J+JKVAX_K]!

SFOUNAN(JKMAXpFI,AI) ;
FOR K:=O STEP t UNT;_ J_MAX-! DO

BEGIN
F[J÷JKMAX,K] := AI[K,1) 1

P[J_JKMAX,KsJKMAX] :: AI[K,2) ;

END ;

END ;
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FOR J:=O STEP 1 UNTIL JKHAX-1 DO

FOR K:=O STEP 1 UNTIL JKqAX-1 DO

BEQIN

AIJ,K,_} |= F[J.K]'F[J+JKHAX_K*JKHAX) ;

AId,K,2| _= F[J,K+JK_AX|$FIJ$JKHAXwK} l

A[J,'K,Zl :# FIJ,K|+F[J$JKHAX_K+JKMAX] ;

A[J,'K_2] := "F[J,K*JKHAXI*F[J+JKHAXeK)

END =

END DFOURAN ;

PROCEDURE DFOUH|NT(JKHAX.A.C°D.XO) ;

VALUE JKHAXpC,D,XO ; [NTEGEA JKHAX ; REAL C,D ! .ARRAY k
BEGIN

OGNNENT |NT(SUH(AiJ,K.1]*I*A[J,K.2])*EtI(JX+K(DX÷C))) =;

A[O.Op2|*(X-XO)*SUH(A[JwK,t)*[eA[J,K,2])*Et](JX+K(DX+U)))
INT§OER J,K I REAL H,HCOS,HS[N ;

FOR J:=O STEP 1 UNTIL JKMAX-1 DO

FOR K:=-(JKHAX-t) STEP 1 UNT[_ JKHAX-1 DO
IF J_O - K_O THEN

BEGIN

H st AtJ,K,2I/(,I÷K*D) !

AIJ.K.2] S= -A[J.K.1I/(J+KtD) !
A[J,K,I] :# H ;

END
ELSE

AIO.O.2] Z= AIO.O.1] ;

AIO'IOosJ := O i

HCOS _: COS(J*XO÷K*(D*XO+C)) ! HS|N := S|N(J*XO+K*(D*XO+G)) !

FOR J:=O STEP 1 UNTIL JKHAX-1 DO

FOR K::-(JKHAX-1) STEP 1 UNT|L JKHAX-1 DO

AIO.O,1] == A[O.O,1]-{ ]F J_O THEN 2 ELSE IF J=O^K_O

1 ELS_ O)*(AIJ,K,1)*HCO$'AtJoK,2I*HSZN) ;
END DFOURZNT ;

PROCEDURE DFOURPRODSP(JKHAX.A.8.C) ;

INTEGER JKHAX ; ARRAY A.B.C !

EEGIN COHNENT SUH(A[J,K,t]*|eA(J,K,2))eEt[(JX*KY)

* ((B['I,0.1I*I*B[-loO.2])tEe-]X + B[O,O.1) + (Oil,Go1)

*|*B(1,0,2))*EtZX) :: SUH(C(J,K,1]*|*CIJ,K,2I)*E_|(JX+KY) ;

INTEGER J.K ;

FOR K::-(JKHAX-1) STEP 1 UNTIL JKHAX-1 DO
BEGIN

C[O.K,1] |= A[1.K,1]*B[1,0*lJ+A[1,K.2IeB[1,0,2I

*A|O.Kpl)*OIO.OwlI+AII.'K.1)*B[1.0*I]*A[1.'K.2)*BIlwO,2]
C[O.K.2] := "A[1.K.1]*B[1.0.2]*AII_K.2]*B[1.0wl]

*AIO.K.2)*BIO.O.1]+A|!.-K.1)*B[1.0w2|-AI1.-K.2|eB[1.0,I)

FOR J;:l STEP 1 UNTIL: JKHAX-2 DO
§EGZN

C[J*K.I) :1 ([J*l.K.lJ*B[1.0.1]*A[d+1,K,2]*G[l,O,2]

$AtJ,K,1]*BIO,O,1)$AiJ-I_K,1)*B[I_O,1]

-A[J'I.K,2I*B[1,0,2| !

CIJ,K,2) := "AIJ$_,K,1]*B[1,0,2J+AiJ+I,K.2]*BIlwO,1]

+A[J*K,2]*9[O,O.1I*A[J-1,K.1]*B|I,O,2)

+A[J-I,K,21*B[1,0.1) I
END ;

C[JKHAX-1,K,1] :: A(JKHAX-1.K,1)*BiO,O,1)*A[JKHAX-2,K,1)

*BII.O.1)-AIJKHAX'2.K.2)*B[1.O.21 I

C(JKHAX-1,Kp2] := A(JKHAX-_.K,2I*B[OeO,lJ*AIJKHAX-2,K,I)

*BII.0*2I+AIJKHAX'2.K.2I*B(I.0.1] !
END ;

END DFOURP_ODSP ;

THEN
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RRO©EDURE DFOUREV(X,XO,JKHAX,AoCmD,AEV) ;
VALUE X,XO,JKMAX,C,D ;

:REAL XpXO,CpD,AEV ! ]NTEGER JKHAX ; ARRAY A ;
:BEGIN

INTEGER J,K ;
AEV := A[O,O,1I+A[O,O,2]*(X-XO) ;
FOR K:=I STEP 1 UNTIL JK_AX-I DO
AEV := AEV_2*A(O,K,tl*COS(K*(O*X+C))-2*A[O,K,2]*SIk(K*(E*X*C))
FOR J:=l STEP 1 UNTIL JKHAX-1 DO
FOR K:=-(JKHAX-1) STEP 1 UNTIL JKMAX-1 DO
AEV := AEV+2*A|JwK,1]*COS(J*X*Kw(D*X*C))-2*A[J,K,2]*SIN(J*X

+K*(D*X+C)) ;
:END DFOUREV ;

REAL H,HS,EO,ESO,AO,EXZOoAS,EXZSpD,C,RES,TF,TFT ;
_NTEQER JKMAX,J,K,[ ;
ARRAY ALOpBEO,ALS,BES[I:4] ;
_OR_AT INF := tt(SH EO =-,F14._O/6H ALPHA,3X,4E20.IO/PH BE]A,4X,

4E20.lO/16H SEMI-MAJOR AXI$,E20._O/13H ECCENTRICITYpE20.IO/4H T =,
E18,10°13H * (E-EO) +_E20,_O,19H * (SIN(E]'SIN(EO))) I' ;

DATA IN:
READ(H,EO,ALO[1],ALO|2].ALOI3),ALO[4),BEOIII,BEO[2),BEOI3],BEO[4]) !
CUTPUT(Stp''(13H1CENTRAL HASS//4H H =,EIB.tO////

22H SATELL[TE UNPERTURBED/)VvjH) !
AO := ALO[ZI*ALO[t]$ALOI2]*ALOI2]*ALOI3]eALOI3)+ALOI4I*ALO[4) !
EXZO := BEUI1]*BEO[tI+BEOI2]*BEO|2]+BEO[3]eBEO[3]+BEO[4]eBEO[4) !
AO l= (AO+EXZO)/2 ;
EXZO Z= (-AO_EXZO)/AO ;
CUTPUT(51,INF,EO,ALO(lJPALOI2],ALOI3],ALO(4],BEO[li,BEO[2]jBEO[3}_

BEO[4),AO,EXZO,AOtl.5/SQRT(_),'EXZO*AOtl.5/SORT(H)) ;
EEAD(HS,ESO,ALS[II,ALS[2],ALS[3],ALSi4J,BESIZ],BESi2],BESI3]eEE5[4))!
CUTPUT(Pl,I_(///16H PERTURBING HASS//4H M =,E18.10)tt,MS) ;
AS I= ALSIlitALSI1]+ALS[2)*ALS|2)÷ALS[3]*ALS[3]+ALS|4]*ALS[4) !
EXZS == BES[1]*BES[I]*BES[2)*BES|2]÷BES[3]tBES[3]*BES[4]*BES[4! !
AS == (AS÷EXZS)/2 ;
EXZS := (-AS+EXZS)/AS ;
CUTPUT(51,1NF,ESO.ALS|l],ALS[2],ALS[3],ALS[4],BES[1],EES|2]PEES[3],

BES[4I,ASpEXZS,AStl.5/SORT(:4*HS),-EXZS*AStl.5/SORT(H+HS)) ;
EEAD(JKMAX) !
CUTPUT(51,'t(///

_9H APPROXIMATION OF THE FOURIER SERIES BY FOURIER POLYkOPIALS//
8H JKMAX =,[5)_VpJKHAX) I
READ(TF,TFI) ;

RESCNANCE ANALYS]S:
:= SORT(I÷HS/M)t(AO/AS)tl.5 I

C := ESO'EXLStSIN(ESO)-Dt(EO'EXZO*SIN(EO)) !
GUTPUT(51,t°(///19H RESONANCE ANALYS|S//SH E1 =,F13olO,bH * E _P

F14.10/)'t,D,C) ;
EES := 1 ;
FOR J:=Z STEP 1 UNTIL 2*J_kX DO

,BEGIN
| := ENTIER(J/G) ;
FOR K::I-Z,I,I+tPI+2 DO
IF ABS(J-K*D) $RES THEN
BEIIN

RES :: ABS(J-K*3) ;
OUTPur(Pl,t'(tX,I4,2_ -w|4p2H *°FI_,_O,4H =_F15.10)'',

J,KwD,J-K*D) ;
END ;

:END !
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FIRST ORDER PERIURBAIIONS:
CUTPUT(51,''(26HIFIRST ORDER PERTURBATIONS) IT) ;
REWIND(I) ; REWIND(2) ;
FOR J:=O STEP 1 UNTIL 2*JKMkX O0
BEGIN

ARRAY F{I:_I.FK[I:8.0:2*JKHAX] ;
FOR K:=O STEP 1 UNTIL 2*JKMAX DO
IEEIN

PF(H,MSp3.1415926536/JKMAXeJ,3.1415926536/JKMAX*K,ALOwBEO_
AO,EXZO,ALS,BES,AS,EXZS,F) !

FOR I::1 STEP 1 UNTIL 8 DO FKII.K] := F|I] ;
END l
BINWRITE(2, FOR I::l STEP I UNTIL 8 DO ( FOR K;=O STEP

1 UNTIL 2*JKMAX DO FK(I,K])) ;
END ;
FOR I:=l STEP I UNTIL 8 DO
BEGIN

INTEGER II !
ARRAY FJKIOI2*jKMAX,O:2,JKHAXI,DEL[OIJKMAX-1,-(JKPAX-1):_KMAX-lw

1=2| ;
REWIND(2) ;
FOR J::O STEP 1 UNTIL 2*JKMAX DO
BINREAD(2, FOR II::% STEP t UNTIL I DO ( FOR K:=O STEP

1 UNTIL 2*JKMAX DO FJK[J,K])) !
DFOURAN(JKMAX,FJK,DEL) ;
DFOURINT(JKMAX,DEL,C,D,EO) I
BINWRITE(1, FOR J::O STEP t UNTIL JKMAX-I DO ( FOR

K::-(JK_AX-1) STEP i UNTIL JKMAX-[ DO
(DEL|J_K.I|.DEL[J.K.2]))) !

IF I_4 THEN
OUTPUT(SIP''(////EH D ALPHA, I2.4H *wE8.0//)I',I,TF)

ELSE
OUTPUT(51t''(////7H D BETA. I2.4H ,.E8.0//)''.I-4.TF) ;
OUTPUT(51.''(%SH SECULAR TERM :IF13.0wltM * (E-EO)//2XwIFEp2X.

2HEI.IOX.3HCOS,1IX,3_4SIN,EX,IHE,2X,2HEI,IOX,3HCCS,IIX,3FSIN*EXo
1HE,2X,2HEtwlOX,3HCOS,tlX_3HSIN/)'e.TFeDEL[O,Op2]) ;

OUTPUT(Stwe'(13,I4,Ft4.0)'t,O,O,TF*DEL|OwOpl]) ;
FOR K:=I STEP t UNTIL JKMAX-1 DO
OUTPUT(_Ipt'(I3,I4,2F14.0)It_O,K,2*TFeDEL[O,K,I],

"2*TF*DELiOwK,2]) ;
FOR J::l STEP 3 UNTIL JKHAX-3 DO
BEGIN

OUTPUT(51,tt($X) '_) ;
FOR K:=-(JKMAX-I) STEP t UNTIL JKMAX-I DO
OUTPUr(51,,t(I3,14.2FI4.0.4X,214,2F14.0,4X,214,2Ft4.0)t'IJ,K,

2*[F*DELIJIK.II.'2*TFeDEL(J.K.2].J+I.K.2*TF*DEL[J+lwK_I].
"2*TF*DEL[J*I.K.2|.J*2,K,2*IF-DEL[_÷2,K,III'2*IF
• _EL[J+2_K_2]) !

END ;
END ;
REWIND(I) ; REWIND(2) ;
FOR I:=1 |TEP 1 UNTIL 8 DO
BEGIN

MEAL DEL_II,DEL921 ;
ARRAY UEL.DFSDDELAN.DELSI{OSJKMAX-I.-(JKMAX-1):JKPAX-I.II2] !
SINREAD(1. FOR J:=O STEP 1 UNTIL JKMAX-1 DO ( FOR

K:m-(JK_AX-$) STEP 1 UNTIL JKMAX-1 DO
(DELtJ,K,1I,DEL[J,K,2]))) I

DEL[O,O,t) := UEL[O,O,1]-DEL[O,O,2I'EQ ;
PDF9DDELAN(M,ALO,G_O_AO,EXZO,I,DF9DUEEAN.JKMAX) !
DELOII := DF9DUELA_[I,O,1]*DEL[O,U,2) ;
DEL92I := DF9DUELA_[I,O,2]eOEL[O,U,2) ;
OEL[O,O,_] := 0 ;
DFOORPROUSP(JKMAX,_EL,O_9DDELAN,DELSI) l
BINWRITE(2, FOR J::O STEP 1 UNTIL JKMAX-I DO ( FOR

KI:-(JKHAX-1) STEP 1 UNTIL JRMAX-1 DO
(DELSIIJ,K,1),DELSI[J,K,2])),DELvlI,DEL92i) ;

END !
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EEWIND(2) ;

BEGIN

REAL DEL91,DEL92,DEL911,DEL921 ;

ARRAY DELg,DEL91IO:JKHAX-I,-{JKMAX-I):JKMAX-I,I:2I ;

DEL91 := 0 ; DEL92 := 0 ;

FOR J:=O STEP 1 UNTIL JKHAX-$ DO

FOR K::-(JKMAX-I) STEP 1 UNTIL JKMAX-I DO

BEGIN D_L9[JoK,I| := 0 ; DEL9IJ,K,2] := 0 END ;

FOR I;=1 STEP % UNTIL 8 DO

BEGIN

BINREAD(2o FOR J:=O STEP i UNTIL JKMAX-I .DO ( FOR

K::-(JKMAX-1) STEP % UNTIL QKMAX-1 DO

(DEL9I[JJK,1],DEL91[J,K,2])),DEL911,DEL921) ;

DEL9$ ;: DEL91*DEL911 ; DEL92 ;: DEL92+DEL92I ;

FOR J::O STEP I UNTIL. JKMAX-% DO

FOR K:=-(JKMAX-$) STEP $ UNTIL JKMAX-I DO

BEGIN
DEL9[J,K,1] := DEL9[J,K,_)+DEL9|[JmK,1] ;

DEL9[J,K,2] := DEL9[J,K,2J+UEL9|[J,K,2] ;

END ;

END ;

DFOURINT(JKMAX,DEL9,C,D,EO) ;

DEL9[O,O,1] := DEL9[O,O,l]-2*COS(EO)*UEL91+2*SIN(EO)*DEL92 ;

DEL9[1,0,1] :: DELg[1,O,l|*DEL91 !

DEL9[1,U,2] := DEL911,O,2]+OEL92 I

EINWRITE(1, FOR J::O STEP 1 UNTIL JKMAX-t DO (POR
KI:-(JKHAX-1) STEP 1 UNTIL JKMAX-1 DO

(DEL9(J,K,I|,DEL9IJ,K,2])),DEL91,DEL92) ;

OUTPUT(St,''(II/18H D T *,EE.0/llZ6M SECULAR TER_S :,F13.0,

11H * (E-EO)/16X,F13.0,26H * (E*COS(E)-EO*CCS(EO))/16X,

F13.0,26H * (E*SIN(E)-EO*SIN(EO))//2X,ZHE,2X,2HEt,$O_,3HC05,

l_X,3HSIN,8X,1HE,2X,2HE_,tOX,3MCUS,ZZX,3HSIN,BX°lHE,2Xp2HE_,

IOX,3HCOS,ItX,3HSIN/)'',

TFT,TFI*DEL9[O,O,2],2*TFTeOEL92,2*TFT*DEL91) ;

OUTPUT(St,''(13,I4,F14.0)'',O,C,TFT-DEL910,O,I]) ;

FOR K::L STEP 1 UNTIL JKMAX'$ DO

OuTPUT(5%,''(I3,I4,2FI4.0)'',O,K,2*TFT*DEL9[O,K'I]'

"2*TFI*PEL9[O,K,2|) ;

FOR J::l STEP 3 UNTIL JK_AX'3 DO

BEGIN
OUTPUT(51,''(lX) '') ;

FOR K::-(JKMAX-1) STEP t UNTIL JKMAX-1 DO

OUTPUI(SZ,'w(I3,14,2r$4.0,4X,214,2F14.0,4X,214,2F14.0 )t'w

J,K,2*TFT*DEL9|J,K,t],'Z*TFI*_EL9IJ,K,2],

J*%,K,2*TFT*DELQ[J÷I,K,_],'2*TFI*DELQ(J+I,K,2|,

J+2,K,2eTFT*OEL9|J÷2,K,1I,'2*TFT*DEL9|J*2,K,2]) ;

END ;

END !
EVALUATION OF [HE SERIES:

BEGIN

REAL E,_ELEV,DEL9%,DEL92,T I INTEGER 11,12 ;
ARRAY DEL[O:JKMAX-I,-(JKMAX-t):JKMAX-I,I:2| ;

READ(I) ;
IF I_O THEN oUT_uT(Stp,t(25H1EVALUAT|CN OF THE SEHIE$) _') )

FOR 11:=1 STEP t UNTIL I DO

IEOIN
READ(E) ;

OUTPUT(_Zptt(////4H E =,Ft4.1U/2bXwltMUNPERIURBED,9X,

12HPERTURBATION,gX,9HPERTURUEU/IOXpSHALPHA)W',E) ;

REWINU(1) ;

FOR 12:=1 STEP 1 UNTIE 4 DO

BEGIN
BINREAD(%, FOR J:=O STEP 1 UNTIL JKMAX-1 DO ( FOR

K:=-(JKMAX-%) STEP 1 UNTIL _KMAX-1 DO

(D_L(J,K,1I,DEL(J,K,2]))) ;

DFOUREV(.E,EO,JKMAX,DEL,C,D,_ELEV) !

3UTPUT(St,''_20X,3E20.tO)'',ALO|I2|,DELEV,ALO|I2]+UELEV) ;

END ;
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OUTPUr(51,''(IOX,4HBETA) 't] i
FOR I2::1 STEP 2 UNTIL 4 DO
IEO|N

BINREAD(1, FOR J:-O STEP 1 UNTIL JKHAX-1 DO ( FOR
K:=-(JKMkX-_) STEP_ 1 UNTIL JKMAX-1 DO
(DEL(J.K.1I.DEL(J.K.2]))) !

DFOUREV(EoEO,JKHAX,DEL,O,D,DELEV) !
OUTPUT(51oIt(2OX,3E20,IO)IlwBEO|i2I,DELEV,BEO|I2I*UELEV) ;

END ;
B|NREAD(1. FOR J:,O STEP 1 UNTIL JKHAX-1 DO ( FOR

K:=°(JKHAX-1) STEP $ UNTIL JKMAX-1 DO
(DEL(J.K.1].DEL[J.K.2])).DEL91.DEL92) l

DFOUREV(E.EO.JKHAX.D_L.C.D.DELEV) !
DELEV I= 2*DEL92*(E*CO$(E)-EO*COS(EO))÷2*DEL91*(E*SIk(E)

-EO*SIN(EO))+DELEV ;
T :_ AO_I.5/SQRT(H)*((E-EO)-EXZO*(SIN(E)-SIN(EO))) !
OUTPUT(51.1'(/IOX.1HT.9X.3E20._O)'t.TeDELEV.T*DELbV) !

END !
END !
CUTPUT(5$,tt(//////I_H END OUTPUT) t') ;

BNO ;
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Output of program ANPER. Fourth example.

CENTRAL MASS

Ms, 1.0000000000E O0

SATELLITE UNPERTURSED

EO • 0

ALPHA 7.07106781186-01 0 I_OHOO00000E O0 0

BETA 1.00OO000000E O0 1.00000000008 00 -7.0720670118E-01 *1.414_13S6246 O0

S|M|-RAJOR AXIS 3.0000000008E O0

ECCENTRICITY 4.99999999990-01

T:m 5*1961_24227E O0 * (E'EO) * "2.59807021146 00 Q (S|N(E)'SIN(Go))

P|ETURE_HG MASS

Mu 1.0000000000E-02

EO " 0

A_PHA 3.00800000008 O0 n

|ETA 0 S.O00OO00000E O0

SEMI-MAJOR AXIS 1,6006000000_ 01

ECCENTRICITY 0

T:s 7.59885348296 01 * (E'EO) +

3.00000080000 O0 0

0 +'3.0000000000§ O0

-0 * (S|N(E)-SIN(EO))

APPROXINAT|ON OF THE _OUR|ER SERIES 8Y FOURIEq POLYNOMIALS

JNMAX " 13

RESONANCE ANALYSIS

61 • .0683807424 * 8 * 0

I" 13 * .0683007424 = .1110503494

1 - 14 * ,0683807424 • .0426696070

1 15 * .0683607424 •- -.0257111353

2 - 29 * .0603607424 w ,01695_4717
3 44 • .0683007424 •- -.0087526636

9 " 73 • .0683807424 • .0082058080

B - 117 * .0683807424 s -.000_4_0556

F|RST CREEP P|RTURSATIONS

DALPHJ I * 1E 14

88CULAE TERM• 275947504 * (E'GO)

8 E1 COS SIN

O 0 34081166103
0 1 -3019179143 -3860292829

0 2 *28t07172082 -30626281940

E St COS SIN E El COS SIN

O 3 3212603509 4732426530

0 4 -370689109 -778492691

0 5 41934077 132542619

0 6 -3609407 -22585097

0 7 50795 3968004

O 8 92879 -686471

0 9 -34153 117906

O 10 9166 -20013
0 11 -2168 3342

O 12 45E -560

1 -12 2303 6428 2 -12 17 -1187 3 "12 -568 _527

1 "11 -5004 -24228 2 -11 -1360 8666 3 -11 3636 -6612

I "10 $360 96623 2 -10 12173 -38840 3 -10 -20950 27570

I -9 36772 -394696 2 -9 -62204 169319 3 -9 112202 -109509

-8 -400077 1624170 2 -0 468758 -713869 3 -8 -564032 408881

1 -7 2738195 .-6696792 2 -7 -2680999 2883938 $ -7 2677481 -13_7379

1 -6 -18094494 26903298 2 -6 13791445 -10969819 3 -6 -11035369 4032664

1 -5 87186253 -106000613 2 -S -66568032 383741SS 3 -5 47627154 -0371713

1 -4 -4446465_9 400609462 2 -4 2970817t0 -115108198 3 -4 0164362673 1208256

1 "3 2136046561 -1402294290 2 -3 -1166002161 252292767 3 -3 407645682 100957562

1 -2 -9359996203 4369492102 2 -_ 3291249051 77515843 3 -2 -448094896 -4668_1730

"1 532?56986 582558535 2 -t -401625744 -266533904 S "1 122022511 196995160

1 O -2273519972 -430785509 2 _ 846486879 243798079 3 0 -51729011 -118971655

1 464804596 25783603 2 1 .-142190513 -23841479 3 1 24761486 201_6313

t 2 460644040 1649072456 2 2 53071443 -1_0028730 3 2 -6962909 °501412

1 3 -57473137 -352537R67 2 3 -15741467 42460499 3 3 3726154 -2076612

I 4 2219937 71631240 2 4 4664735 -9801702 3 4 -1217364 770296

L 9 1475683 -13996751 2 g -1282004 2061932 3 5 337303 *187072

I 6 -664042 2657102 2 6 324861 -400715 3 6 .65157 3715_

1 7 200030 -491072 2 7 -77629 73470 3 7 20147 -6212

X 8 -51772 88334 2 E 17716 -12710 3 S -4539 812
1 9 12329 -15422 2 9 -3896 2048 3 9 963 -4_

1 10 -278n 2598 2 1_ 830 -298 3 10 -200 -16

11 598 -421 2 It -169 41 8 11 41 1

1 12 -111 84 2 12 26 -33 3 12 -11 37
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E E1

4 -12

4 -11

4 -10
4 -9

4 -8

4 -7

4 -6

4 -5

4 -4

4 -3

4 -2

4 -1

4 0

4 1
4 2

4 3

4 4

4 5

4 6

4 7

4 8

4 9

4 10

4 11

4 12

7 -12

7 -11

7 -10

7 -9

7 -8

7 o7

7 -6

7 -5

7 -4

7 -3

7 -2

7 -1

7 0

7 1

7 2

7 3

? 4

7 5

7 6

7 7

7 8

7 9

7 10

7 11
7 12

10 -12

10 -11

10 -10

10 -9

10 -B

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 I

10 2

10 3
10 4

10 5

10 6
10 7

10 8

10 9

10 10

10 11

10 12

COS

993

-5184

25539

-110848

519383

-2099700

7616931

-23194927

49895948

-46400442

2770991

-1403017

1793137

11602

509590

-271227

144295

-50458

14371

-3639

85D

-107

39

-10

20

-860

2909

-9342

25075

-52602

67095

"4060

-56884

61401

-25743

39328

-12761

10080

-3917

1707

-668

225

-69

19
-5

1

-0

10
-44

46

-51

-37

236

-201

314

-107

211

-33

56

-14

8

1

-0

0

-0

-0

-0

-0

0

-0

1

-3

9

SIN

-1196

4657

-16954

55932

-156548

302636

100434

-4432082
24117595

-67849O68

12831040

-27175508

7116746

-3940146

1057683

-184391

26541

-4856

1828

-749

265

-B2

21

4

-42

-75

711

-3_01

15499

-49603

117348

-166367

31041
-105640

7950

-17846

4408

"gO0
660

-103

132
-74

43

-20

8

-3

1

1
-4

9

93

-209

337

-298

5

-189

-130

31
-56

57

-25

21

-9

5

-2

1

-0

0

-0
0

0

-0

1

-2

9

E 61

5 -12

5 -11

5 -10
5 -9

5 -5

5 -7

5 -6

5 -5
5 -4

5 -]

5 -2

5 -t

5
5 1

5 2

5 3

5 4

5 5

5 4

5 7

5 8

5 9

8 10

5 11
5 17

8 -12

8 -11

8 -9

0 -5

8 -7

8 -6

8 -8

8 -4

8 -3

0 -1

8

8 1
8

8

8 4

8 9

8 6

8 1

8 5

8 9

8 10

8 1l

8 12

11 -1_

11 -11

11 -in

11 -9

11 -7

11 -8

11 -5

11 -4

11 -_

1l -1

11 0

11

11 2

11 3

11 4

11 8

11 6

11 9

11 1t
11 12

COS

-1215

5565

-24064

97246

-360344

1181498

-3185935

5599852

-4242510

-804785

040251

-258537

532360

-111434

52185

-709
.5729

3688

-1396

410

"104

24

-6

7

-34

489

-1401
3381

-6114

5681

4205

-10421

11520

-4686

7557

-2235

2086

-810

418

-178

72

-28

10

-4

1

-0

-0

2

-9

34

-1

-15

41
-43

47

-14

32

-1

8

-1

0

0

-0

0

-0

0

-0

0

-0

0

-0

0

-1

1

-3

SIN

744

"2387

6404

"11100

-13115

233959

-1271424

4499648

-9432795

1865628

-4791539

1150290

-906866

338371

-129968

45992
-13328

4226

-1315

394

-112

3O

-6

-8

30

209

-870

3039

-8461

17411

-21091

3392

-13993

-1005

-1609

-219

554

-225

205

-75

33

-9

2

0

-0

0

0

-0

0
4

-31

44

-32

"5

-10

-27

10

"12

12
-9

4

"2

1

-0

0

"0
0

0

0
"0

-0

0

-0

2

l E1

6 "12

6 -11

6 -10

6 -9

6 -8

8 -7

6 -6

8 -5

6 -4

6 -3

8 -2

8 -1

6 0
6 1

6 2

6 3

6 4

6 5

8 6

6 7

6 B

6 9

8 10

6 11

8 12

9 -12

9 -11

9 "10

9 -9
9 -8

9 -7

9 -6

9 -5

9 -4
9 -3

9 -2

9 -1

9 0

9 1

9 2

9 3

9 4

9 5

9 6

9 7

9 8

9 9

9 10

9 11

9 12

12 -12

12 "11

12 -10

12 -9

12 -B

12 -7

12 -6

12 "6

12 -4

12 -3

12 -2
12 -1

12 0

12 1

12 2

12 3

12 4

12 5

12 6

12 7

12 8

12 9

12 10

12 11

12 12

COS

1155

-4655

17437

-59334

176122

-420377

659237

-299118

-266453

279197

-113554

173370

-54622

36220

-11887

3992
-916

110

15
-12

' 4

-1

2

-9

44

-199

425

-632

264

1179

-1758

1966

-748

1310

-315

365

-126

69

-30

t2

-5

2

-1

0
-0

-0

0

-2

6

-21

-3

7

-6

7

-2

5

1

1

0

-0

0
"0

0

-0

0

-0

"0

0

"0

-0

-0

"0

0

-0

0

SIN

-269

396

1070

-12794

69351

-268333

751797

-1271126

250861

-741718

130374

-143360

51667

-21557

10300

-3915

1661

-623

227

-75

2_

-0

7

-25

-179

549

-1361

2474

-2572

285

-1714

-510

-31

-197

222
-99

82

-35

10

-7

3

-1

0

-0

0

-0

-0

2

-9

-3

-2

-1

2

-2

2

"1

1

-0

0

-0

3

-0

0
0

-0

"0
0

-0

-0

0

-1

2

etc.
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0 1' " 1E 14

SECULAP TER_S • 38564546416 * ('8-EO)

10548733673 * (_*CO_(_)-_O*CNS(En))

7627811101 • (EeSIN(_)-EOeStN(EO))

E E1 COS SIN E E1

O 8 -11505645088

0 1 21365564621 _28685893497

0 2 -33987863205 160175750664

8212315157 -240350548250 3

0 4 -1902924203 3743615524

0 5 420928879 -598881638

0 6 -91195562 96617531

8 7 19609821 "15515659

0 8 "4220800 2438500

0 9 916806 -364061
0 10 -203010 47919

0 11 46504 -3953

0 12 -10951 -848

I -12 -77876 -21987

I -11 240445 107817

I -10 -830906 -528871

1 -9 3044459 2626021

1 "8 -11462752 -13208628

1 -7 43318093 67342349

1 -6 -160077712 -349286079

1 -5 552632476 1853243006

1 -4 -1572113587 -10174502822

1 -3 1432287429 58862293100

1 -2 40329233934 -380255199016

1 -1 -22734762425 24607948841

1 8 -11796390900 188699678544

1 1 30547905568 -18691211525

1 2 -22441936245 37714880868

t 3 3283205066 -4037481117

1 4 -516533297 481442251

1 5 84511566 -58798306

I 8 -14086889 7048744

7 2365967 -781824

1 8 -398017 69844

1 9 66783 -1861

1 10 -11136 -1328

1 11 1827 502

1 12 -245 -132

,COS SIN B E1 COS SIN

2 -17 -22605 -15650

2 -51 64266 59899

2 -50 -189739 -235769

2 -9 555290 935566

2 -8 -1539407 -3693860

2 -7 3752486 14353117

2 -8 -6470129 -54184411

2 -5 -2824908 194805940

2 -4 92137645 -640086722

2 -3 -477346760 17_8563395

2 -_ 762108197 -2142913670

2 -I -429056181 153986597

_ 331172366 32410592

2 l -503323835 14354473

2 _ -26930283 99482891

2 3 -15623625 2424991

2 4 6126680 -1762946

2 _ -1603778 319984

2 6 362191 -27736

2 7 -75506 -4265

2 q 14915 2943

2 9 -2825 -987

2 1_ 515 260

2 11 -87 ,-6_

5_ 1 10

3 -12 896 1213

3 -1t -2826 -5266

3 "10 7850 21645

3 -9 -16946 -83083

3 -8 13979 2_8848

3 -7 106393 -041133

3 -6 -679995 1498152

3 -5 1472965 3687268

3 -4 0611642 -87577793

3 -3 -93720362 365696143

3 -2 245666128 -1091265337

3 -1 -126849690 52652386
3 O 252154856 -14757865_

3 1 -40169326 7354419

3 2 34555371 -11196271

3 3 -6335954 1342825

3 4 965692 -67226

3 5 -126243 -8622

3 6 13297 2752

3 7 -747 -236

3 8 -129 -84

3 9 62 50

3 10 -16 -17

3 11 3 4
3 12 2 1

etc.

EVALUAI[O_ OF THE SERIES

E • 80.0000000000

ALPHA

BETA

UNPERTIJR88_ DERTURHATION PERTURBEO

7.8710678118p-nl 7.3l_34598838-04 7.0783841579E-01
0 -_.5493975552E'03 -2.5493975552E'03

1.OO0000OOOqF O0 1.6946540171E'03 1.0016946540E 00

0 3.19_26457208-04 3.1952645720E-04

1.000000000_= O0 -5.5_83833139E-04 9.99449161658-01

1.0000000000F O0 4.9473407216E-04 1.0004947340E O0

-7.0710678118F-01 4.5363897422E-04 -7.0665314221E-01

-1.4142135624_ O0 1._682831436E-03 -1.41284527928 O0

4.1827439227_ 02 2.1180003860E-02 4,1829557228E 02

END OUTPUT
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3. THE RESTRICTED ELLIPTIC THREE - BODY PROBLEM

by J. Wa%dvoge%

3.1 Theor_r

In sections 1.1.2 and 1.2.2 the restricted clrcu%ar three-body prob%em has

been considered (computation of a partlc%e's orbit in the force fie%d of two at-

tracting centers - referred to as earth and moon - on the assumption that the

moon's orbit about the earth is a clre%e). In the 3-dimensiona% case the simu%tane-

ous regu%arlzatlon at both attracting centers cou%d be carried out by the use of

the B3-transformation.

In the seque% we deve%op the regu%arlzatlon of the more genera% restricted

e%%iptic three-body prob%em, but we content curse%yes with the important points of

the methods and proofs. A detai%ed ana%ysls is contained in [4].

In the restricted e%%iptlc three-body prob%em we again consider a partic%e of

neg%igib%e mass moving in the force fie%d of the earth and the moon, but the moon

is a%%owed to move on a Kep%er e%%ipse. The fact that the partic%e has neg%igib%e

mass is the on%y assumption distinguishing the restricted e%%iptlc prob%em from the

genera% prob%em of the three bodies.

By means of a transformation to a suitab%e coordinate system the differentia%

equations governing the motion of the partic%e in the restricted e%%iptic prob%em

may be transformed to equations which are very simi%ar to those governing the mo-

tion of the partic%e in the restricted circu%ar prob%em. Consequent%y, the simu%ta-

neous regu%arizatlon of the restricted e%%iptic prob%em at both attracting centers

may a%so be carried out using the B3-transformation.

3.1.1 Equations of motion. Let ra be a partic%e of neg%Igib%e mass moving in

3-dlmensiona% physlca% space. The forces acting on the partic%e are the Newtonian

attractions of two attracting centers - referred to as earth and moo____n_n- having the

masses rn I and rn A respective%y. As these point masses are not inf%uenced by the

partlc%e, they move about their cente_ of gravity (_ on K__%er orbits. 0n%y the

e%%Iptic case of this Kep%er motion is considered here.

We introduce a rectangular coordinate system 7'' _'" _J with origin O, ro-

tating about Its _-axis with angu%ar ve%ocity _ in such a way that the earth

and the moon a%ways %ie on the _-axis. Thus the _,_z-p%ane is the orbita%

p%ane of _n I and _nx. The varying distance between the earth and the moon is de-

noted by _. Let _u be the true anoma%F of the Kep%er motion; this may be defined

as the ang%e between the direction from the center of gravity to the perieenter of

the moon's orbit and the positive Vf-axis (Fig. 3.__!I).The orbit of the moon with

respect to a rectangu%ar coordinate system centered at the earth (with axes of

constant direction) is referred to as the re%ative Kep%er orbit.
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Fig. 3.__!I. The restricted e_iptic three-body probtem.

From the theory of Kepler motion [6] we reca_ the relations

Here

,o (3,1)
d(V.,)= "/+e_s,,z, '

d,z

,_2 _. ,f,'(_, + _.=) (3,3)

the gravltationa_ constant, and areis the gravltationa_ parameter, p and e

respectlve_y the seml_atus rectum and eccentricity of the re_atlve Kepler e_llpse.

In order to state the relationship between the true anomaly _ and the physica_

time _ we a_so introduce the eccentric anoma_ E of the re_atlve Kepler e_Ipse,

defined by

e
IV- El _- _ . (3,4)

Then, introducing the seml-major axls _ of the retatlve Ke_er e_Ipse given by

f- e z '
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Kepler's equation

(3,5)

enables us to compute _ from a given va_ue of E.

Finally, in terms of the mass ratio /_, defined by either of

(3,6)

the coordinates of the earth and the moon are

(-#_', o, o), (,,,,-##e,o, o) (3,7)

respectlve_y.

In order to establish the differentia_ equations of the particle's motion in

the coordinate system _I, _, _J, we list the forces acting on the particle per

unit of mass (denoting differentiation with respect to physical time t by a dot):

Here

centrifugal force (_r'SL_# , e-'OL _z' 0 )

Coriolls force _, -2t._s_## O)

force caused by the (_, --C_#, O )
angular acceleration

f_A-_ _ a-____-
gravitation t "" _# _ _ '

is the gravltationa_ potentia_

(3,3)(3,6) @5 = - _ - _ , (3,8)
f, /o_

and /o¢ and /e_ are the distances of the particle from earth and moon respective-

ly, given by

(3,9)

The equations of motion of the particle are

_;-z_o¢_ - _ ,_,- _ '2=- -

@_+ z_ _, - __ + _ _, - _ ____ (3,10)

As Scheibner [11] suggested in 1866 it is possible to reduce the restricted

elliptic three-body problem to the restricted circular problem by simple substitu-

tions of the varlab_es. For this purpose we introduce into (3,10) the true anomaly

instead of the time as independent variable:
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(3,2) ! = _

Denoting differentiation with respect to _ by an accent, we obtain

Using these re%ations in (3,10) we find

(3,11)

_,'-p."- _,_,',?,_"÷2_',z;-_'_. +_,d,?,
I. .@" / /

a?,_
(3,12)

Taking into account

(3,2) Cut = g.z
_- - .2_._- ,

(3,12) can be written as

gt ] ] ____/

g/. / g/

fJ-.2--g Tj

02" _,,

(3,13)

b_es

Fo_owing Scheibner's proposa_ we further introduce the dimensionless varia-

defined by

_. - _. , z- _2,_ (3,_4)

and restate some of the preceding resutts (in partlcu_ar the differentia_ equations

(3,13)) in terms of these dimenslontess variables. In the _Wz-system the earth and

the moon occupy the fixed points

(3,7)(3,14) ("-/e.z,O, 0 v) ., ("/-/a , O, O) (3,15)

respectively. It is convenient to introduce a_so the dimensionless distances

r-,, _' ' rl- e •

which are the distances of the point ("Yf,.Yz, .)/.3) from the points (3,15):

(3,_)(3,_+) _ _ /,,._+/.<_,-+_f+_'- , _=_ /_+/.<-,_,_'-+_.,- (3,_+)

Remembering that _ is a function of _, we obtain for the derivatives of _d the

expressions
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I / #(3,44) _.-e_'+e".y,. , "t,"- ey/'+ .ze_,. +e_. , ,'-/,=,3.

Inserting these into (3,13) yie%ds

" ..[Y /--/ /e_'=" _'H= _

it'll "- If" a@>,: +{:'-2,_. l.."_ - e<."_,z,

(3,17)

(3,1)

satisfied by

reduced to

By using the differentia% equation

(_) _ z_'+E-p

_, the expression occurring twice

<'_ ,_ /--_-

on the _eft-hand side of (3,17) is

Furthermore the common factor on the right-hand side of (3,17) may be written as

/I"L 6"3
('3,2) = --

By flna_y substituting the dimensionless variabtes into

atlves,

¢__,-,,___ _ x_(_,-,,_ ,.)
Pt p., d G r= "

[ iZ. )

@_ and its partla% derlv-

the differentia% equations

formed into

# _ /__ _.,,, , .vS-- .,,,l
yl+_-ji - -7 _ (-'-" - _,. _)-)'_]

(3,17) of the restricted e%%iptlc prob%em are trans-

(3,18)

In the restricted oircu%ar prob%em (_ _ O) e is constant (--_); therefore

the factor e/_ is the only correction to be made in order to genera%Ize the clr-

cu%ar to the e%%Iptlc case. In the clrcu%ar case a%so _ is constant; thus the

transformations (3,11) and (3,14) are mere%y magnifications of the time and space

varlab%es. These transformations then do no more than to introduce the specla% u-

nits defined at the beginning of section 1.1.2.
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In the next section the dlfferentla_ equations (3,18) wl%_be regu%arlzed.Ac-
cording to the methodsgiven In section 1.1, werequire quantities which correspond
to the potentla%function U and the perturbing forces p_ of the tab%efo_owlng
(1,16). Thus, our intention is to flnd functions _/_yr,y_,)/_j _) and p_'Cy,_)_)
(_- _ i, 3 ) so that (3,18) may be expressed In the form

Thls may be accomp%Ished as fo%%ows. We notice that the expressions In the square

brackets of (3,18) are the partiat derivatives of the function

z<"- + +-¢)
wlth respect to Y#, _'L and _ respectlve%y. As the factor

(3,1) --_ ffi f
P f+ e coypu

does not depend exp],lclt%y on ._., the potential, is the function

" f+eo,sV_

eX= +;<')-," +
4 + e oo_ _u

(3,21)

For the specla% case of the restricted clrcu%ar prob%em ( e -- O) It coincides with

the potentla% (1,62). It shou%d be stressed however that _ depends exp%iclt%y on

the independent varlab%e _/2.

The perturbing forces iOi acting in the restricted e%%iptlc prob%em are, ac-

cording to the equations of motion (3,18) and (3,19),

p, z y_" , p_ - - my/ffi , p_ = O. (3,22)

Thls force may be regarded as a modified Corlo%Is force; the formu%ae (3,22) are

slml%ar to (1,30).

3.1.2 Resu%arlzation. The potentla% (3,21) occurring In the restricted e%%lptlc

three-body prob%em is singu%ar at the two attracting centers (3,15). Because It de-

pends exp%iclt%y on _, the theory of section 1.1 (in partlcu%ar equations (1,20),

(1,23),(1,24)) must be s%Ightty genera%Ized. But the method being used in section

1.1.2 In order to regu%arlze the 3-dlmenslona% restricted clrcu%ar prob%em at both

attracting centers can stl%% be apptled here. Thus we again introduce the four gen-

era%ized coordinates _ by formu%a (1,64):
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y,. + +., ]
v,'+ v_% _"

& #

v,"+ vZ+ 5 _

_,,-÷,¢+_,- ].

/9 of this B3-transformation is given by

_ s

The functiona_ determinant

• r_ g'a. (3,24)
(1,65) D -- v,"+ v,"+ _" '

where the distances _, _ must be written in terms of the _ :

dd+ vf + ,,_-
, q _ _ rv,-;)_+_'+ v? + v2 (3,25)

li_,"+C+ '4

For our e%liptlc problem the regu%arizing independent varlabte _ prays the rote

of a "fictitious true anoma%[" and is defined by

(1,18) _Z'_ -- _. _/& (3,26)

As in section 1.1, A- A(wf, vL, _, V,,) is a sca%ing factor to be specified in the

seque%. Now, the equations (1,22), adapted to our notations, have the form

(1,23) A _,S _/ 2. "_. "'_)-_-_# " Zg_./ , .i- /,2.,3,4'.., (3,27)

where _ is the function (3,21), _a is the squared "vetocity", that is

z---_.,t_o/ '

and the _. are the components of the perturbing force (Corlo%is force) in the

parametric space. The rutes (1,67) for computing these forces stitl hold true, but

the sealing factor J must be taken into aceount; this yietds

&-#

As in section 1.1, the flna% step of regu%arlzation is to e%imlnate the ve%oclty

from (3,27) by the use of an energy equation. But we shou%d remember that our

potentla% _ is not conservative, and therefore a vls viva Integra% %Ike (1,11)

(Jacobi Integra%) is not avai%ab%e.

In order to bypass this difficu%ty we propose the fo%%owlng method. Mu%tlp%y-

Ing the 4-th equation of (3,18) by _ summing over Z and taking into account

(3,20) yle%ds
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l dU"

l÷e_,,_ dr,,
= O. (3,29)

Writing the %ast term on the %eft-hand side as

' ' </
equation (3,29) becomes

(3,30)

By integrating from the inltia% va%ue _Z/o of the true anoma%y to a genera% va%ue

_, equation (3,30) may be brought to a form simi%ar to (1,11):

_--_+Z_ - A + IV"_ (3,31)

where

iS an integra% rep%aclng the work _/ of section 1.1. The quantity

constant and may be computed from the inltia% ve%oolty _o

tia% _@ at instant _.,@ by

_o + Z_o(3,31)(3,32) A - _-

(3,32)

is an energy

and the initia% poten-

Atthough _ is infinite at co%%isions, the integra% W _

finite va%ue of _p. This can be shown by substituting the fictitious anoma%y

the integra% (3,32):

(3,33)

exists for every

in

(3,25) k/* =/A D ZZ_ e 5,_ _ _a (3,34)

Here the expression

,_.o_'- x [_c,_,yn +S,./_)_k<c,.+_,.,,.f)/ (3,3_)
v,"+ v_+ v;"

no %onger has singu%aritles at the attracting centers, provided that _ remains

finite. The denominator _'+ v_+ V_" is in genera% non-zero: it vanishes on%y if

the partic%e is infinite%y remote. This proves our statement.

The above mentioned fina% step of regu%arization is now carried out by e%imi-

nating _z between the equations (3,27) and (3,31). The resu%t is (rep%aclng the

_] by (3,28))

' _ ' _rn:vx-t,U
6_& I _-_-- (3,36)

@

&.#



- 96 -

(cf. (1,68)}. This system of differentia_ equations must be integrated numerically,

and, in order to do this, the values of _ and _/_ must be known at every step in

the integration. Therefore we add the fo_owing two regular differentia_ equations

to the system (3,36):

(3,34) _ (I'÷e cx_.__)m. •

_ ": X D . (3,38)(3,26) _a

This terminates the regu_arization procedure. Equations (3,36),(3,37) and (3,38)

form, in a_, a simultaneous system of 10 regular first order differentia_ equa-

tions for the unknowns _, _/_5 _= _A,J,@), _I/_3 _ as functions of 5 .

By using Birkhoff's transformation, the regu_arization of the 2-dimensiona_

restricted e_iptic three-body problem has a_ready been performed by Szebehe1_ and

Giacag_ia [12] in 1964. The result of these authors was a system of integro-differ-

entia_ equations.

According to section 1.1.2 the sca_ing factor _(_, _, _, _) might be chosen

as _-- f. In this case the equations (3,36) become very similar to the equations

(1,68) governing the restricted circular three-body problem. Equation (3,38) then

becomes

_ _ (3,39)

In order to integrate the system (3,36),(3,37),(3,38) of differentia_ equations nu-

merically, the independent variable _ is chosen to have a constant increment. As

(3,39) shows, the corresponding increments in _ become sma_ whenever one of the

distances _, _ becomes sma_ (i.e. whenever the particle comes c_ose to the

earth or to the moon). This is the most important advantage produced by regu_ari-

zation.

On the other hand, however, any variation in the denominator _@ _ ÷ _m

modifies the step _ength of _. Since the v÷-axis, whose equation is _+_+ _z

-- O, corresponds to infinity in the physica_ space (cf. (3,23)}, the denominator

of (3,39) approaches zero if the particle escapes to infinity. From a numerica_

point of view a sma_ denominator should be avoided. Our numerica_ experiments show

that V_÷ F_÷ _ may approach zero even if the particle is not extremely far a-

way in physica_ space. In such a case the increment in _ becomes very _arge with-

out any physica_ reason, and sometimes the numerica_ integration breaks down.

In order to avoid extremely _arge steps of _,

sca_ing factor _ as

(in the seque_ _ is used as an abbreviation for

equation (3,38) may be written in the form

in what follows we define the

(3,40)

_z÷ V_÷ V_). By this choice
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which avoids the difficulties associated with (3,39).

In section 3.1.3 we describe a method that may additlona%ly be used in order

to avoid extreme%y smat% va%ues of the denominator _L@ _,÷ _..

For our choice of _ (of. (3,40)) we now proceed to establish an exp_iclt

form of the system (3,36),(3,37), (3,38).

We mu%tip%y equations (3,36) by _z the first term becomes

&.¢

where

(3,41)

The second term is transformed as fo%%ows:

where Q is an abbreviation for the expression on the rlght-hand side of (3,35):

(_= )klD _-"['_'----([-(W.)('_ ÷_J_) -- p('l ÷ _ n Y-TJ • (3,44)

In order to carry out the partia% differentiations required on the right-hand side

of (3,43), we introduce the quantities

= ,.-,,j-
r,, .= $v_ + ev_-r,),., _, -.-_.v_.'- ('4-r.)v<
r,_ = (VX- ,',) v,, r,,,_- (v7 - G) v.

(3,25) O._ -- ( V_ - tl ) V._ t'-A._ -- (V'_ - G ) Vj (3,45)

G, = v'_.v_ = G,,<- v'Z.v+

as we%% as

(3,46)

and

Then we obtain
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"2

o,.(÷'-x"N _) + _,_:_" J4j •
(3,48)

By using the symbo_ _,_ defined in (1,67) as we%% as the abbreviations (3,40),

(3,42),(3,44) - (3,47), the regularized system of differentia% equations then be-

comes

(3,36)

( _Z, " Kronecker's symbol) (3,49)

"Z{
&-#

!
1+ e _s

(3,37) e{l_V"_ .- Q
ds

(3,38) _ = r, P"z

in order to evaluate the derivatives _ , we notice thatFinal%y, by introducing

the quantities

and
z #

X , _.i- ' ,k " '

(3,5o)

X

the B3-transformation (3,23) may be written as

>',: -i-# ,<-6(_+_,J, >,==£A,.,+<_.,_J,_.=_(_+<_.,J. (3,52)

Differentiating these equations while taking into account (3,50) and (3,51) yie%ds

X4,= _ '

X4+- #,

(3,53)

In the sequel the points (_, O,O, O) and (-_, O, O, O ) are called centers (in

the parametric space). By the B3-transformation (3,23) each of them is mapped onto
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one of the attracting centers in the physlcat space.

If the point 7" is near one of the centers, the _). (j--6_,3 ) appear in

(3,53) as differences of two atmost equa_ quantities. The fot_owlng manner of com-

putation avoids the toss of significant figures.

i3,,- __[-(,',+_:)(_-_) - ,'_- V + _"], (_,5oa)

_b,,- _(_'+ C')(v,b+_) - #,
,_b,,.---v,;-_,,- _:v: (3,53a)

x4,= v,'--#_-<><,

Assuming that the regutarized variabtes _., d_./da, _/,_ _ are given for a

genera_ point of the partlcte's orbit, the physicat coordinates, vetocity and time

can be computed as fot_ows:

a) The B3-transformatlon yietds the dimensiontess coordinates Yz, and with

determined by (3,1), the physica_ coordinates _e" are obtained from (3,14).

b) The derivatives of Yl with respect to _ are obtained from (1,19),

y<.-_ <<yi ,,: _ LZ_q _'_,. z- *._,-_ (3,54)
d_ r1_ ], da ' '"m

where the _. are given by (3,53). A formuta for the computation of the ve_oclty

_./_g in the physicat space can be estabtished by differentiating (3,14), tak-

ing into account (3,11),(3,2) and (3,1):

. (¢)'1,_,.- a, (ey.'+ = /-r y,. - _. ,

_ y;+ . , ,_,.:..,. <,.55,
c) The physicat time _ may be computed from _ without integrating a differ-

entia_ equation by using the formulae (3,4) and (3,5).

We now add a few remarks concerning initia_ conditions. From a given inltiat

anomaly _., initiat position _c" and initiat vetoclty _g the initlat dimension-

tess coordinates _k may be computed by (3, 1) and (3,14). The formutae for the

computation of the Initia_ derivatives _.I dy_./_ are obtained by sotvlng

(3,55) for _.f and using (3,14):

_'" "- p( V_ iz - pg_ se'_ Z/.,o. _g , g.- ¢,_, 3 (3,56)

The regu_arlzed coordinates _. may be computed as described in the sentence fot-

towing formuta (1,69). Then, according to (1,19), the initiat "velocity" d_-/d_

is given by

J

- x24x', i- ,,,z,3, 4_
_ 7

(3,57)
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It may be verified that the components of the ve%ocity computed by (3,57) sat-

isfy the re%ation

where pa,f, are given by (3,50), and F@ may be defined by (3,50a)or by

Equation (3,58) is the above mentioned non-ho%onomic condition be%onging to the B3-

transformation. If this condition is satisfied by the initia% va%ues of the parti-

c%e's motion, it is satisfied by the regularized variab%es of this motion at any

time (i.e. for any _ ). The proof of this statement is contained in [4].

Fina%%y we co_%ect the formu%ae of this chapter in order to estab%ish a set of

guiding ru%es ca%%ed

Fifth procedure

(Solution of the restricted e_iptic three-body problem from given initia_

values by numerica_ integration of the regularized differentia_ equations.)

Data

Universa_ constant:

gravitationa_ constant.

Constants characterizing the earth-moon system:

r_ _ _z masses of earth and moon respectively.

Compute:

/_-- _ _ _z/ (gravitationa_ parameter),

C omput e:

_ _L (mass ratio).

semi_atus rectum and eccentricity of the moon's relative Kepler

e_ipse about the earth (/o>o , 0 g e _ f ).

a= ___R__
_-e

(semi-major axis).

Initia_ data of the particle's orbit:

_/_ initia_ true anomaly of the moon in its relative Kepler e_ipse.

_, _, _j initia_ position _ of the particle in the ro-
tating coordinate system (3,59)

_, _z_ _ initial, velocity J described in section 3.1.1.

Initia_ values for the regularized system

Compute successively the fo_owing quantities (which are a_ eva_uated at the in-

stant _) :

Inltla_ distance earth-moon:

_÷ _cOS_o
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Initia_ pot ent i_a______and_ c 2ns t ant_ o f _ ene_r_gy____ :

(3,60)

(3,61)

The initia_ values _ of the regularized coordinates

are computed by the fo_owing set of formulae (obtained by reading table (1,31)

from bottom to top):

Inverse KS-transformatlon (of. 2nd procedure}:

(3,62)

Take the Ceft- (right-) hand set if x! $ O ( _, < O ) and choose _÷ (u_) arbi-

trarity. Finatty the regutarized coordinates are

_,-I ; _. _ % (3,63)

,/'-- 2., 3,'@.

Initia_ derivatives K_=/_____:

By applying the formulae (3,50),(3,51) and (3,53) with

the values of the coefficients (_-) at instant _o

derivatives _./_ are then given by

- Z_ z."
ds Z-I

The Inltla¢ values of _/* and _ are 0 and

the independent variable 5 may be chosen as

are obtained. The initia_

(3,64)

_/-Jo respectively. At instant _-/-Jo

imO .
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The regu%arized differentia_ equations

for the restricted e%_iptic three-body problem are given by equations (3,49). In

order to compute a%% the auxiliary variab%es occurring on the right-hand sides of

these equations, formu%ae (3,40), (3,42), (3,50), (3,51), (3,52), (3,53), (3,25), (3,44),

(3,45),(3,46),(3,47) must be applied in this order.

Motion in ph_sica% space

Whenever information about the motion of the partlc_e is wanted, the resu%ts ob-

tained in the parametric space must be transformed into the physica% space. In or-

der to do so, the quantities _,_,_,_,_,_,_.,{_.] are first computed from the

actua% values of _, _/d_, W _, _ by use of (3,25),(3,40),(3,50),(3,51),(3,53).

The va%ues y_o and derivatives _ of the dimension%ess coordinates are then

given by

With

&, P

the position _i and X_££&_[ _Z of the particle are given by

In order to determine the _2_ _T_ _, at which the partic%e attains this po-

sition _i, first compute the eccentric anomaly E from

and then by Kepler's equation

t- -k--CE- E)

Checks

Together with the transformation into physica_ space, two checks may easi%y be

carried out:

a) The non-ho_onomic condition (3,58) must atways be satisfied:

_#v_ (3,67)

b) The equation

__ + + W- - o

(which fo%%ows from the energy equation (3,31) by taking into account (1,20) and

(3,21)) has to be satisfied at any time. The quantity Q is given by (3,44).
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3.1.3 Remarks. If a so%utlon of the dlfferentla% equations (3,49) passes through

one of the two centers (_3 03 O, O ), the corresponding orbit in the physlcat

space passes through one of the attracting centers. In this case the partlcte co%-

tides with the earth or the moon. As a consequence of regutarization the deriva-

tives _/_/j have finite timits even at cottlsions (in the physica% space the

the components of the partlcte's ve%oclty generatty tend to infinity if the parti-

cte cottldes with one of the attracting centers).

In order to discuss the two types of cottislons together, we introduce the

sign _ which takes the vatue +f or -/, according as the particte cottides with

the moon or the earth. The attracting center with mass

. o,,,+ (3,69)
then has coordinates

- /_) _ ' F- - _s - 0 (3,70)

in the physicat space. The corresponding point in the parametric space is

o-
= E ' _ _ _ = v_ --0 . (3,71)

We now consider a co%%ision of the particte with the attracting center indi-

cated by _. Then

_--_ , _--o, _--o, _o.

According to (3,25),(3,40),(3,44) the fo%%owing %imiting va%ues are obtained

f+6- 4-_-
% ----_-, r/ _._ , r_ 2 Q O .

Substituting these in the energy equation (3,68) gives

Id_5_:)2 ___ I + _'{/"-_ , (3,72)
4-- ida / 2-li+ e co_ _¢)/-f

where tp¢ is the vatue of the true anoma%y at the instant of the cottision under

consideration. Thus at a cot%ision the %imit of the squared vetocity in the para-

metric space is finite and does not depend on the direction of the cottision.

In the case of a cot%ision, the ve%oclty can no %onger be transformed by using

equations (3,64) and (3,65), because the physicat vetocity becomes infinite and art

the _# vanish. However instead of mapping vetocity vectors at one of the centers

in the parametric space, we may estab%ish a correspondence between the directions

of vectors at these centers.

We add to the position vector (_, 0_ O, O) of the center given by er the

smat % increment
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/ d_y__d_
which is para_e_ to the velocity vector _-_//d5 ' "_-'-" "_-'-' at this center.

In order to obtain the corresponding increment which is denoted by

the point

(_2,, 2., 2,), (3,74)

(_-(_.,-_,), _,, _,, _,,) (3,75)

is mapped into the physica_ space by the B3-transformation. Substituting (3,75) in

(3,23) and expanding the results in power series at the point (520, O, 0) yields

Yl" I-,-_ o_C_,-_- -" ,__ ?_ _L _ ÷ _/_+ ... terms of 3rd and

Y_" _('v1 _ -- _ V_) _ "'" I higher orderys= .z(_, _s* _,_%)" "'"

By keeping the direction of the increment (3,73) fixed, but a_owing its _ength to

tend to zero, it fo_tows that the desired increment in the physica_ space is in

fact given by (3,74) with

2," v,"-v.-_,, + v_.

2,- z C_,_j + _,.%)
This is exactly the KS-transformation (1,44). Since the Yl are homogeneous func-

tions of the 5" (a_ having the same degree), the transformation (3,76) is a map-

ping of the increments' direction. For that reason the _ength of the increment

(3,73) may now be chosen arbitrarily; for example, simply

The vector (3,74) (with WZ given by (3,76)) then indicates the direction of the

co_ision under consideration.

If the motion of the particle is started exactly at a co_ision (with the at-

tracting center given by _), one is concerned with the problem of finding an ini-

/_V_ ¢:_'V_ _ __._) corresponding to the given direc-tia_ velocity vector _5 ' _ • _ "

tion (_-W_,Yz_Y_) of the co_ision in the physica_ space. This may be done by

applying the inverse KS-transformation (1,47) to the vector (#f,ya, y3 ). If for

simplicity this vector is assumed to have unit _ength,

Y, ÷ Yz +Y_ : Z , (3,78)

the fo_owing formulae are obtained:

-" '(1 + Y,)P/+v, - _"

_,.. 2._,+Y,%
or

÷v 8 "-y_
2. _. + 2s g,

_, -
i- 9,

_" ,__,

(3,79)
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The vector (_, _, %, _ ) is para%%e_ to the inltial velocity vector in the

parametric space and also has unit length. Thus, according to (3,72), the initial

velocity vector is

(3,80)

Modifications of the fifth procedure for the case of an ejection

(the Initial position of the partlc%e is one of the attracting centers).

0nly these parts of the 5 th procedure, which must be modified in the case of an e-

Jection, are recorded here. The subtitles are the same as in the 5th procedure.

Data

Initial data:

The initial position of the particle may now be indicated by the sign _ :

G_ I -f 1 . motion { n_f (earth)?"_ starts at n_L (moon)

(_I, @z3 _j ) indicates the initial direction of the particle's orbit.

Furthermore the energy constant /Z must be given (cf. (3,61a)).

(3,59a)

Initial values for the resu%arized system

_!_E_!_S____j. and derivatives I,-I of the dimensionless coordinates:

o-÷ /
#v- z #, >,.- >,j=o.

By

Initia% direction

y(= #,

Initial potential _ and energy constant _ :

.yc$ we now mean the components of the unit vector indicating the

• _'- YaZ, 3.

The formulae (3,61) can not be used. The energy constant

given by the initial data.

is

Initial values of the regularized coordinates ._L:

(3,60a)

(3,61a)

(r-

It is not necessary to apply (3,62) and the inverse KS-transformation (1,47).

Initial derivatives _.Vj_/____S_:

The coefficients (lbg.) cannot be used because they all vanish.

With

compute the _.

equations of (3,79), according as y_

The initial derivatives are given by

/

Y.-x#,
from (3,79). Use the _eft-hand or the right-hand

is positive or negative.

(3,63a)

(3,64a)
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" _ I V.l.(Y+ e _ _.,o) , v,, vj, ,

where _o is the Inltla_ true anomaly.

Referring to the remark fo_owing £ormuta (3,40) in section 3.1.2 we now give

a few words on avoiding smart vatues of the denominator _z÷ _=÷ _a during nu-

merlca_ integration of the regutarlzed dlfferentlat equations (3,49).

As it is mentioned in the fifth procedure, there are generat_y many points in

the 4-dlmenslonat parametric space which are mapped onto the same point of the 3-

dlmenslona_ physlcat space by the B3-transformatlon. The set of points (_,_,Wa, W,)

having the same image as the fixed point (_, _, _, Y_ ) is catted the flbr____epass-

Ing through the point (_, _, _, _ ) and is given by (cf. [4], page 26)

(3,81)

where /D _ is the expression

2
p- ,,/-+,,:<+v;+

In order to obtain art points of the fibre passing through the point _., the para-

meter _ must take at_ vatues in the interva_ O _ _ _ _Y. In genera_ the fibres

are clrctes, the onty exceptions being the V@-axls _V_+ _-- 0 and the two

centers (_ O, O, O).

For the fo_towing discussion, on the fibre clrc_e passing through the point

we introduce the points #7 and F. They have the property that, of art the points

belonging to the considered fibre circte, their distances from the _-axis, _N

and _F, are the feast and the greatest respectivety (nearest and farthest point).

There are atso fibre circtes, where a_t the points have the same distance from the

v#-axis, but this case is not important here. The retation

hotds true for every fibre clrcte.

Let us now consider for a point _-

. I (3,82)
#

tying on an orbit in the parametric space

the fibre passing through this point. If for _° the denominator

is smart compared with _, it fottows from (3,82) that the point

point /7 of its fibre. In order to avoid a ctose approach of

pose the fottowlng method.

If the denominator _

smatter than a certain timit

ties near the

to N we pro-

at a point (_, _, _, _ ) of the orbit becomes

_/oz _< _, the motion in the parametric space is
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stoppedandrestarted at another point (Wt_i_,,Wj,_) of the fibre passing
through _ . Thecoordinates _- are given by (3,81) wlth a sultab%eva%ueof _,
anda formula for computingthe derlvatlves _---_ from _ maybe obtained by
differentiation of (3,81) wlth respect to _.

The consequenceof thls procedureIs not recognlzab_eIn the physlca_space
becausethe B3-transformatlon mapsa_ the points of a fibre onto the samepoint.

A sultab_e choice of _ maybe obtained from the fo_%owlngstatement, [4]:

Weconsider equation (3,81) as a transformation (dependingon p ) of the parametric

space onto itself keeping fixed the fibres. The specla_ transformationthat maps

the farthest point f of a fibre onto /V is given by (3,81) wlth _" _N -- _- •

On the other hand the transformation mapping F onto a genera% point (_, _, _j v@)

_ylng on the fibre of F Is given by (3,81) wlth

Thls information about the position of the point _ on its fibre may be used to

choose the ang%e _ occurring In (3,81) in such a way that the transformed coordi-

nates _. satisfy the inequatlon

W,z+ w_. W_ > C_oz.

A_though this procedure may sometimes he%p to avoid extreme%y smat% denomina-

tors during the numerlca% integration, the singu_arlty occurring when the partlcte

escapes to infinity is stit_ present. But in practice the partlc%e's orbit is of

very %Itt_e interest at a great distance from the earth and the moon.

3.2 Examples

The fifth procedure is very usefu_ for computing orbits in the restricted e%-

_Iptlc problem whenever the partlc%e comes c_ose to one of the attracting centers.

In order to i%_ustrate this we give here some resu%ts of numerlca_ experiments. A%%

the computations were carried out on the Contro% Data 1604-A computer of the Swiss

Federat Institute of Technotogy.

A eomputationa_ program (referred to as SIMREG = slmuttaneous regu_arlzation)

for the ca_cu_atlon of trajectories in restricted three-body probtems was written

In ALGOL. In its essentia_ parts the program Is a reptlca of the fifth procedure,

but the transformation to an inertia_ coordinate system is added. The numerica% in-

tegration of the regu%arlzed dlfferentla_ equations (3,49) is atways performed by

the Runge-Kutta method (slng_e step method of error order 4).

The orbits resu%tlng from the computations are dlsp_ayed in two coordinate

systems; we refer to them as

a) the inertia_ coordinate system,

b) the dlmenslon_ess rotating system.
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The Inertla_ coordinate system 7;' _;_ _ has its origin at the center of gravity

of the two attracting bodies (earth _! and moon _j). The _-_Is initia%ty (at

time _O) passes through the attracting centers _d is directed from earth to

moon. The _-axis is obtained by rotating the _-axis throu_ the angte _/_ in

the moon's orblta% ptane (in the sense of the moon's revo%ution). The _-axis is

then chosen to form a ri_t-handed rectan_tar system together with the two prevl-

ous axes _, _:.

The dimenslon%ess rotatln 5 s_stem is the coordinate system _r, _a, _s introduced

in (3,14). The origin is again the center of gravity, and the _-axis coincides

with the _f-axis. _e system rotates about this _Is and "putsates" in such a way

that the earth and the moon occupy fixed positions on the _-axis.

3.2.1 Transfer of a vehic%e from earth to moon. In this first exampte the computa-

tion of a rea%Istic orbit from earth to moon is described. In order to compute the

vehicte's trajectory by the program SIMREG, the motion of the moon had to be ap-

proximated by a pure Kep%er orbit which yle%ds vatues for the orbita% etements of

the moon. This was performed by approximating a given exact ephemeris of the moon.

We are indebted to Mr, B. Stanek for this auxltlary computation. Onty perturbations

by the moon have been taken into account. The resutting orbitat etements of the

moon are:

seml-major axis

time of revo%utlon

eccentricity

Initia% true anoma%y

mass ratio

= 382 100 km

T = 648.61321 926 hrs

e = .o5

_q,= .3 tad

= .01211 68060 .

In art our examptes we use "standard" units adapted to the earth-moon system

under consideration:

unit of tength:

unit of time :

unit of mass :

(semi-major axis)

rtZ_ +_n z (tota% mass)

By the taws of Kep%er motion it for%owe that

_ /-- e ]- (semi_atus rectum)

T- _x-

_n1+ rn x -- /

" / (gravitationa% constant).

(3,84)

In standard units the adopted initia% conditions for the vehlcte (in the rota-

ting coordinate system described in section 3.1.1) are

_f = -.02182 35477

_L = -.01299 03502

_j = .00542 30458

#_ = 5.25062 2867

_ = -2.01747 1424

_j = 8.94355 4806.
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.00,'

0

.970

.010

.005

0

.970

.99583 moon's surface

.975 .980 / .... .9916"t .99234 Yl

Unit of length = 382 IOOkm (semi-mojor oxis of the moon's orbit).

The points of the orbit with morks correspond to equot increments L_s = .2 of the fictitious onomoly s.

At eoch of these points the moon's true onornoly _/ (in rodions) is indicated.

.98491

•98766

I.OOtOt

98958
s=

•99087

• 99167

.99436

..99213

' ' I ' ' ' ' I '- '

.975 .980 .99259

Flg. 3.___33. Detal_ of Flg. 3.___2: vicinity of the moon.
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In Fig. 3.2 and Fig. 3.3 we show the transfer orbit from the earth to the moon

resulting from the constants and inltia_ values listed above. The trajectory starts

about 285 km above the earth's surface and co_%ides with the moon's surface. If

this body is assumed to be a mass point, the orbit may be continued into the inte-

rior of the moon and further into deep space. The minimum of the vehicle's distance

from the center of the moon is about I/Zo of its radius. After this near-co_%i-

sion the vehlcte escapes with high ve%ocity from the earth-moon system.

For the numerica_ computation of this orbit a constant step A_ = .02 of the

fictitious anomaly _ has been chosen. Due to the influence of regu_arization the

corresponding step _ of the true anomaly increased from 4"10 -4 up to its max-

imum 6-10 -3 between the earth and the moon and was finat%y reduced to 5"10 -6 at

the c%osest approach to the moon. 143 Runge-Kutta integration steps were needed

for reaching the moon's activity sphere (radius = 57 500 km), and 160 more steps

were needed for the _eg of the Journey to the ctosest approach. No numerica% insta-

bilities are generated by this c%ose approach.

In Fig. 3.4 the true anomaly _ is ptotted as a function of the fictitious

anomaly _ . _(a) is monotonica%_y increasing, but it increases very s%ow_y in the

neighbourhood of the points _ = 0 and _ = 6.06 corresponding to the earth and

the moon.

2

(rodions)

9

Iclosest approoch

to moon's center
I
I
I
I
t
I
I

i , i J I J _ i i I i i_

0 5 6.06 I0 s
0

Fi___.3.__!4• The true anomaty 14J as a function of the fictitious anoma%y

in the case of Fig. 3.__22.

The values of the %eft-hand sides of the checks (3,67) and (3,68) did not ex-

ceed 1.7"10-9 and 6.5.10-9 respectively after 500 steps. In order to obtain

information about the exactness of the numerlca_ integration the same orbit was

computed with a new step tength _ = .04 , and two corresponding sets of coordi-

nates _V_ describing the arriva_ on the moon were compared. The maximum difference

was 1.2-I0 -6 . Thus the orbit computed with ,45 = .02 is exact to at %east 6

decima% p%aces.

Because the eccentricity of the moon's orbit, in this examp%e, is very sma%%,

we carried out corresponding experiments with a fictitious moon _n_ moving in an

orbit of high eccentricity. The fo%%owing input data were chosen (standard units):
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ff = m, = .I , p = .B6 , e = .8 , _@ = - .5 ,

o =o
#. =- .5

_.) = 0 )_ = 9.15 -

The resulting trajectory is displayed in Fig. 3.5. It is remarkable that the

vehle_e reaches the moon _a, a_tough the initia_ ve_oclty is a_most perpendlcular

to the orblta_ p_ane of _m.

The computation proceeds in the same way as in the preceding example. No dif-

flcu_ties occur because of the _arge eccentricity of the orbit of r#IL.

3.2.2 A 3-dlmensiona_ periodic orbit in the restricted olrcu_ar three-body problem.

Recently, R.F. Arenstorf [13] has computed families of p_ane periodic orbits pass-

ing near both attracting centers of the restricted circular problem. On the other

hand C.L. Goudas [14] constructed many 3-dimensiona_ periodic orbits without c_ose

approach to both masses. In order to make a first step in synthesizing the methods

of the two authors, we present in Fig. 3.6 an example of a 3-dimensiona_ periodic

orbit of a particle ejected from the first attracting center (earth) and approach-

ing very c_ose to the second center (moon). About 100 preliminary orbits have

been computed by Mr. E. Sturzene_6er in order to achieve periodicity. Up to the

present we have not been able to construct a 3-dimensiona_ periodic orbit co_iding

with both attracting centers.

The system of the attracting centers is characterized by the values (standard

units)

# = _,_ = .I , p = I , e = o , _o = O.

The direction of the ejection needed for periodicity was found to be

( -I , 0 , .06874 215 )

in the dimenslon_ess rotating system, whi_e a value

]'t. = -.82448 546

had to be taken for the energy constant. The half period _-/_ thus became

F/2 = 7.77403 9

(2-_ = 6.283... corresponds to one revolution of the moon).

The orbit resulting from these input data is symmetric with respect to the

_,_-p_ane. This is a consequence of the facts that the inltia_ position and the

direction of ejection are in this p_ane, and that the orbit intersects it perpendic-

ularly at the time Z_/Z . Therefore on_y half the orbit is p_otted in Fig. 3.6 (the

projection to the )_,_-p_ane is a curve being covered twice).

A fina_ remark to this periodic orbit is added. At ejection the velocity com-

ponent perpendicular to the _,_m-p_ane is sma_, but _ater, after the c_ose ap-

proach to the moon, it is very _arge. This fact raises some doubts about the sta-

bility of the many c_assica_ p_ane periodic orbits if perturbations perpendlcu_ar

to the moon's orbita_ p_ane are a_owed.
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3.2.3 Conclusions.

- From a theoretical point of view the B3-regularlzatlon of the e%liptlc restric-

ted problem is very well suited to the qualitative discussion of trajectories and

to obtaining information on the general behaviour of a three-body system.

- It may also be well suited to feasibility studies on transfer orbits from one

celestla% body to another, as for instance in problems of capture.

- For the exact numerical computation of transfers it is a disadvantage that the

two attracting centers are assumed to move on exact Kepler orbits. If this assump-

tion is not satisfied, one could use, at the beginning of the trip, KS-regu%ariza-

tlon centered at the earth and switch at a convenient instant to KS-regularlzation

centered at the moon. We have no experience about the numerical behaviour of such a

method.

- It should be mentioned in this connection that A. Deprit and R. A. Broucke [15]

have suggested this idea in the special case of the 2-dimenslonal restricted clrcu-

la_.._rrprob%em by using Levl-Civlta's transformation. They have developed a slmp%e set

of formulae containing a switching parameter. The generalization of such a proce-

dure to 3-dimenslonal motion and to KS-transformation is obvious.
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4. EXPERIMENTS CONCERNING NUMERICAL ERRORS

by C.A. Burdet

4.1 Configuration of the reference orbit

(with which a_ numericat experiments have been performed)

At the time this paper is being written, comptete results of numerica_ experi-

ments are only available for unperturbed and clrcu_ar Kepler orbits (eccentricity

= O) and we sha_ therefore restrict our presentation to this specia_ case.

In order to put the 3-dimensiona_ KS-regu_arization (cf. 1.2.1) into operation

and to investigate its numerica_ behaviour, we choose a circular trajectory with

orbita£ p_ane in genera_ position.

The gravitatlona_ parameter M was set equa_ to 4 in (1,51) and the radius

of the orbit is 4 .

Exact initia_ conditions:

x4 = .36235 77544 9 j

X_ = .93203 90859 7
i

X3 = 0 ,

_ = -.50358 28673 1 j

_ = .19578 27303 0 ,

_ = .84147 09848 0

(4,1)

The corresponding circular orbit has an inclination with respect to the X4,X_ -

p_ane measuring roughly 57 °.

From the above conditions, we derive the fo_owing formulae for the motion of

our particle:

X4 = .36235 77544 9 * cost

x_ = .93203 90859 7 * cost

t is the physica_ time.

Furthermore, we have for the radia_ distance

fo_owing exact expressions:

r mm 4

-- t

- .50358 28673 1 * s(n t

+ .19578 27303 0 * sin t

.84147 09848 0 * sin

I

, (4,2)

r and the true anomaly _ the

(4,3)

(4,4)

4.2 Numerica_ integration of the equations of motion

A) C_assica_ equations of Kepler motion. Our system of dlfferentla_ equations is

composed of 6 first order equations which read
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gl "= _ X__i
r)

(i= 4,2,3) (4,5)

where

We denote the solution of (4,5) obtained wlth numerical, integration by:

.,×i , (i- _,2,3)

initial, conditions are given in (4,1).

(4,6)

B) Regularized equations of motion. The four parametric coordinates u4,u=,u_,u_

and the physica_ time f are computed from a system of 9 first order differentia_

equations which read

(1,74)(1,83) uj -- _ ,

' 4 ujvj -- -¥ ,

b

(1,57)(1,4s) t' = _.. _;

(j - 4,2,3,_-) (4,7)

(4,8)

Here the independent variable is the fictitious time s ; after numerica_ inte-

gration the physica_ coordinates are obtained from

X 4 _ U,m -- bl_.-- U i _ U_ j

(1,44) Xz : 2 (U4U_.-- U3U_ , (4,9)

x,, = 2. ( u, u, + u,.u,,.) ,

and the velocities from

_ = -* (,.,4,_,'- _,_J- ,,,,4 + _,u; )r J

(1,98) xz = _ (u.,u_.4-uzu,' -u,u# - u,u;) , (4,10)

= {

with

(1,45) r == _ U; (4,11)

We denote the numerica_ va_ue of the above coordinates obtained by numericat

integration by:

re_Xi I

for the velocities:

and for the physica_ time:

reS X_

re_
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It shou%d be emphasized that throughout integration we constant%y make use of

the exact initia% va%ue _-_ in the equations of motion (1,74).

The initia% conditions for the parametric coordinates and ve%ocities are taken

from the %eft-hand version of (1,47) by choosing u_- 0 and from (1,48).

Thus, we have at our disposa% the numerica% va%ues of

- the so%ution .ix_ for the c%assica% case,

- the so_utlon ,,gx_ , ,¢gt for the regu_arlzed case,

- and the solution _X_ which denotes values of coordinates of the exact ana_yt-

ica_ solution (4,2).

Comparison of numerica_ solutions with the exact ana_ytica_ so_utlon was es-

tablished for the distance r and true anomaly _, in both c_assica_ and regular-

ized cases. We computed r and _ from the Cartesian coordinates ctX_ and

r,sX_ respectively by projecting the point ×i onto the orbita_ p_ane of the ex-

act solution. The results are denoted in the seque_ by

cLr , ct_ ; re9r , r,g_ respectively.

Furthermore ,_r , =x_ denote the exact values (4,3),(4,4).

Numerica_ errors can now be defined as follows:

for the c_assica_ solution:

dAr (t) - ,_r (t) - ,_r({) , (4,12)

ctA_(t) .. ct_(_- ,x?(tl , (4,13)

for the sotution of the regularized system:

,,Ar (,,_) -- ,,jr(s) - ,xr(r,_t) , (4,14)

,eiA_(,,_t_) = ,es_(s)- ,,_(,¢_t) , (4,15)

i.e. regularized coordinates ,i_r and _,_ _ are opposed to values ,xr and =_

of the exact solution taken at the computed time _=9_ .

We a_so determined the influence of numerica_ errors on the most important of

a_ e_ements of the orbit, namely the semi-major axis a; values of eta , _,3a

yield the fo_owing errors:

¢lAa(t) - ¢[a(t) - 4 , (4,16)

,._ A = (,,_t) - ,,_ a (,,_ t ) - 4 (4,17)

They were computed, during integration, for various values of time, from the corre-

sponding values of the physica_ coordinates _ and velocities x_ .
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A_ experiments were performed on a Contro_ Data 1604-A computer using f_oat-

ing point arithmetic with _44 decima_ p_aces and symmetric rounding.

The dlfferentla_ equations were integrated with the standard Runge-Kutta meth-

od of order 4.

4.3 Description and results of the numerica_ experiments

In the fo_owlng figures, the unit on the time axis corresponds to one period

of revolution of the exact Kepler orbit, i.e. 2_ _ 6.28 units of t .

We describe two experiments:

A) Long term experiment. For both the c_assica_ and the regularized ease, we choose

a step size such that integration of one who_e revolution is accomplished in

10 * 2T _ 63 integration steps.

This relatively _arge va_ue of the step size ( = 0.1 ) c_ear_y brings trunca-

tion errors to the foreground so that round-off errors are Imperceptible.

Fig. 4.1 represents the error behaviour of r and m ; the sca_e factor im-

posed by the errors in the c_assica_ case is such that in the regularized case the

error curve for r can hardly be distinguished from the error curve belonging

to a .

Fig. 4.2 shows errors of the true anomaly.

B) Short term experiment. In contrast to experiment A), experiment B) is primarily

designed for throwing some _ight on the behaviour of round-off errors.

This was done by choosing a sma_er mesh which corresponds to 50 * 2_ _ 314

steps per revolution (step size = 0.02).

Here again results have been p_otted in Fig. 4.3 and Fig. 4.4.

In Fig. 4.4, the curve reg_ requires some exp_anatlons; the main component

of this error is due to the propagation of round-off errors in the integration of

the physica_ time in equation (4,8).

Integration of formula (4,8) with the above mentioned Runge-Kutta method is

equivalent to Simpson's ru_e; for two consecutive values t, and i,, 4 , we have a

relation of the type

_egt.+_ = ,.gt. + h.F(s) , (4.18)

where _(s) is a function determined by the numerica_ method of integration.

Looking at the right-hand sides of (4,8) and (4,11) we see that, on account of or-

bitat stability of Kepler motion, the va_ue of _(s) remains very c_ose to 4 and

is a smooth function of s . At each integration step the addition at the right-hand

side of (4,18) is rounded thus creating a cumulative propagation of round-off

errors and thereby erroneous values of ,egt
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Fig. 4.1. Long term experiment: Tota_ error in distance and seml-major axis.
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Fig. 4._2. Long term experiment: Tota_ error in true anomaly.
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Fig. 4.____3.Short term experiment: Tota% error in distance and semi-major axis.
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Fig. 4.___4. Short term experiment: Tota_ error in true anomaty.
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However it should be emphasized that such a propagation of round-off errors

whi_e integrating a perturbed Kepler motion, is expected only if the physica% time

is integrated with formula (1,9 4 ) of the second procedure (cf. 1.3.2). This propa-

gation no _onger exists if physica_ time is integrated with the companion procedure

of section 1.3.3, since only the perturbation of time is numerically integrated.

4.4 Conc%usions

- The above experiments present numerica_ integrations of the coordinates X_

and consequently do not test the methods developed in chapter I and chapter 2 which

on%y require integration of the perturbations of e_ements mj , @j

- However it has become evident that regu%arized methods are significant%y more

stab%e than c%assica_ ones, during numerica% integration; experiments have corrobo-

rated the theoretica% considerations of section 1.7.1 and they show that the advan-

tage of regu%arization outlined there is more pronounced than expected.

- Further studies (not published here) concerning e_%iptica% orbits show that

this behaviour a%so occurs in such cases; for higher values of the eccentricity,

this beneficent tendency becomes even more significant.

Theoretlca% investigations on such error behaviours are subject of a forthcom-

ing thesis in which separation of truncation and round-off errors, as we%_ as per-

turbed motion wi%l be discussed.
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